Skip to main content

Synthesis of Quantum Dots and Its Application in Heavy Metal Sensing

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 252 Accesses

Abstract

Quantum Dots (QDs) are zero-dimensional nano-particles portraying their distinguishing optical and electronic properties, they are used as nano-sensors. QDs have improved fluorescence characteristics, which comprise photostability, broad excitation spectrum, and narrow emission spectrum. QDs deal with the extensive and sensitive sensing of heavy metal ions ascribed to the presence of distinct capping agents and various functional groups lying outwardly of the QDs. These capping strata and functional moieties attune to the sensing capacity of the QDs, which influences the interactions of QDs with different analytes by various mechanisms. In this chapter, a brief overview of heavy metals as environmental contaminants, their impact on human health, and conventional techniques of detection and underlying modes are first introduced. Then, the role of QDs in sensing heavy metals such as mercury, cadmium, lead, arsenic, chromium, etc., and their progress in the multiplexed determination of heavy metal ions are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem

    Google Scholar 

  2. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QMR (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630

    Article  CAS  Google Scholar 

  3. Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15(27–28):2657–2669

    Article  CAS  Google Scholar 

  4. Ruscito A, Smith M, Goudreau DN, DeRosa MC (2016) Current status and future prospects for aptamer-based mycotoxin detection. J AOAC Int 99(4):865–877

    Article  CAS  Google Scholar 

  5. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew Chem 116(33):4400–4402

    Article  Google Scholar 

  6. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver (I) ions and cytosine–cytosine pairs in DNA duplexes. Chem Commun 39:4825–4827

    Article  Google Scholar 

  7. Hu J, Wang D, Dai L, Shen G, Qiu J (2020) Application of fluorescent biosensors in the detection of Hg (II) based on T-Hg (II)-T base pairs. Microchem J 159:105562

    Article  CAS  Google Scholar 

  8. Hu Y, Zhang J, Li G, Xing H, Wu M (2020) Highly sensitive fluorescent determination of chromium (VI) by the encapsulation of cadmium telluride quantum dots (CdTe QDs) into Zeolitic Imidazolate Framework-8 (ZIF-8). Anal Lett 53(10):1639–1653

    Article  CAS  Google Scholar 

  9. Tan JL, Zhang MX, Zhang F, Yang TT, Liu Y, Li ZB, Zuo H (2015) A novel “off–on” colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity. Spectrochim Acta Part A Mol Biomol Spectrosc 140:489–494

    Article  CAS  Google Scholar 

  10. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed 12:5421

    Article  CAS  Google Scholar 

  11. Wu P, Zhao T, Wang S, Hou X (2014) Semicondutor quantum dots-based metal ion probes. Nanoscale 6(1):43–64

    Article  CAS  Google Scholar 

  12. Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens Actuators, B Chem 242:679–686

    Article  CAS  Google Scholar 

  13. Mehta VN, Desai ML, Basu H, Singhal RK, Kailasa SK (2021) Recent developments on fluorescent hybrid nanomaterials for metal ions sensing and bioimaging applications: a review. J Mol Liq 333:115950

    Article  CAS  Google Scholar 

  14. Karimi H, Rajabi HR, Kavoshi L (2020) Application of decorated magnetic nano photocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots. J Photochem Photobiol, A 397:112534

    Article  CAS  Google Scholar 

  15. Tomczak N, Liu R, Vancso JG (2013) Polymer-coated quantum dots. Nanoscale 5(24):12018–12032

    Article  CAS  Google Scholar 

  16. Rajamanickam K (2019) Multimodal molecular imaging strategies using functionalized nano probes. J Nanotechnol Res 1:119–135

    Article  Google Scholar 

  17. Hu Q, Han X, Dong G, Yan W, Wang X, Bigambo FM, Fang K, Xia Y, Chen T, Wang X (2021) Association between mercury exposure and thyroid hormones levels: a meta-analysis. Environ Res 196:110928

    Article  CAS  Google Scholar 

  18. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48(8):1147–1149

    Article  CAS  Google Scholar 

  19. Li LS, Jiao XY, Zhang Y, Cheng C, Huang K, Xu L (2018a) Green synthesis of fluorescent carbon dots from Hongcaitai for selective detection of hypochlorite and mercuric ions and cell imaging. Sens Actuators, B Chem 263:426–435

    Article  CAS  Google Scholar 

  20. Li L, Liu D, Shi A, You T (2018b) Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid. Sens Actuators, B Chem 255:1762–1770

    Article  CAS  Google Scholar 

  21. Li YK, Yang T, Chen ML, Wang JH (2018c) Supported carbon dots serve as high-performance adsorbent for the retention of trace cadmium. Talanta 180:18–24

    Article  CAS  Google Scholar 

  22. Kaur J, Kumar V, Tikoo KB, Bansal S, Kaushik A, Singhal S (2020) Glutathione modified fluorescent CdS QDs synthesized using environmentally Benign pathway for detection of mercury ions in aqueous phase. J Fluoresc 30(4):773–785

    Article  CAS  Google Scholar 

  23. Zhang L, Li P, Feng L, Chen X, Jiang J, Zhang S, Zhang C, Zhang A, Chen G, Wang H (2020) Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: a visible light-driven photoelectrochemical sensor for the ‘signal-on’ analysis of mercury (II). J Hazard Mater 387(2019):121715

    Article  CAS  Google Scholar 

  24. Manna M, Roy S, Bhandari S, Chattopadhyay A (2020) A dual-emitting quantum dot complex nanoprobe for ratiometric and visual detection of Hg 2+ and Cu 2+ ions. J Mater Chem C 8(21):6972–6976

    Article  CAS  Google Scholar 

  25. Chu H, Yao D, Chen J, Yu M, Su L (2020) Double-emission ratiometric fluorescent sensors composed of rare-earth-doped ZnS quantum dots for Hg2+ detection. ACS Omega 5(16):9558–9565

    Article  CAS  Google Scholar 

  26. Tanwar S, Sharma B, Kaur V, Sen T (2019) White light emission from a mixture of silicon quantum dots and gold nanoclusters and its utilities in sensing of mercury (ii) ions and thiol containing amino acid. RSC Adv 9(28):15997–16006

    Article  CAS  Google Scholar 

  27. Li DY, Wang SP, Azad F, Su SC (2020) Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+. Ecotoxicol Environ Saf 190:110141

    Article  CAS  Google Scholar 

  28. Sahoo NK, Das S, Jana GC, Aktara MN, Patra A, Maji A, Beg M, Jha PK, Hossain M (2019) Eco-friendly synthesis of a highly fluorescent carbon dots from spider silk and its application towards Hg (II) ions detection in real sample and living cells. Microchem J 144:479–488

    Article  CAS  Google Scholar 

  29. Patir K, Gogoi SK (2018) Facile synthesis of photoluminescent graphitic carbon nitride quantum dots for Hg2+ detection and room temperature phosphorescence. ACS Sustain Chem Eng 6(2):1732–1743

    Article  CAS  Google Scholar 

  30. Liu Z, Mo Z, Niu X, Yang X, Jiang Y, Zhao P, Liu N, Guo R (2020) Highly sensitive fluorescence sensor for mercury (II) based on boron-and nitrogen-co-doped graphene quantum dots. J Colloid Interface Sci 566:357–368

    Article  CAS  Google Scholar 

  31. Tadesse A, Hagos M, RamaDevi D, Basavaiah K, Belachew N (2020) Fluorescent-nitrogen-doped carbon quantum dots derived from citrus lemon juice: green synthesis, mercury (II) ion sensing, and live cell imaging. ACS Omega 5(8):3889–3898

    Article  CAS  Google Scholar 

  32. Aderinto SO (2020) Fluorescent, colourimetric, and ratiometric probes based on diverse fluorophore motifs for mercuric (II) ion (Hg2+) sensing: highlights from 2011 to 2019. Chem Pap 74(10):3195–3232

    Article  CAS  Google Scholar 

  33. Patrick L (2006) Lead toxicity, a review of the literature. Part I: exposure, evaluation, and treatment. Altern Med Rev 11(1)

    Google Scholar 

  34. Devi P, Rajput P, Thakur A, Kim KH, Kumar P (2019) Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC, Trends Anal Chem 114:171–195

    Article  CAS  Google Scholar 

  35. Mehdinia A, Mashkani M, Jabbari A, Niroumand R, Ghenaatian HR, Fereidouni N, Nabid MR (2020) Extraction of trace amounts of cadmium in fish and mollusk by Fe3O4@ N-carbon quantum dots as adsorbent. J Food Measure Charact 14(2):725–734

    Article  Google Scholar 

  36. Bandi R, Dadigala R, Gangapuram BR, Guttena V (2018) Green synthesis of highly fluorescent nitrogen–doped carbon dots from Lantana camara berries for effective detection of lead (II) and bioimaging. J Photochem Photobiol, B 178:330–338

    Article  CAS  Google Scholar 

  37. Sharma P, Mehata MS (2020) Rapid sensing of lead metal ions in an aqueous medium by MoS2 quantum dots fluorescence turn-off. Mater Res Bull 131:110978

    Article  CAS  Google Scholar 

  38. Mir IA, Kumar S, Bhat MA, Yuelin X, Wani AA, Zhu L (2021) Core@ shell quantum dots as a fluorescent probe for the detection of cholesterol and heavy metal ions in aqueous media. Colloids Surf, A 626:127090

    Article  CAS  Google Scholar 

  39. Kaewprom C, Sricharoen P, Limchoowong N, Nuengmatcha P, Chanthai S (2019) Resonance light scattering sensor of the metal complex nanoparticles using diethyl dithiocarbamate doped graphene quantum dots for highly Pb (II)-sensitive detection in water sample. Spectrochim Acta Part A Mol Biomol Spectrosc 207:79–87

    Article  CAS  Google Scholar 

  40. Bhamore JR, Park TJ, Kailasa SK (2020) Glutathione-capped Syzygium cumini carbon dot-amalgamated agarose hydrogel film for naked-eye detection of heavy metal ions. J Anal Sci Technol 11(1):1–9

    Article  Google Scholar 

  41. Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2018) A sensitive nano-sensor based on synthetic ligand-coated CdTe quantum dots for rapid detection of Cr (III) ions in water and wastewater samples. Colloid Polym Sci 296(9):1581–1590

    Article  CAS  Google Scholar 

  42. Parani S, Oluwafemi OS (2020) Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (III) ions in the midst of interfering ions. Nanotechnology 31(39):395501

    Article  CAS  Google Scholar 

  43. Khan MMR, Mitra T, Sahoo D (2020) Metal oxide QD based ultrasensitive microsphere fluorescent sensor for copper, chromium and iron ions in water. RSC Adv 10(16):9512–9524

    Article  CAS  Google Scholar 

  44. Mondal TK, Mondal S, Ghorai UK, Saha SK (2019) White light emitting lanthanide based carbon quantum dots as toxic Cr (VI) and pH sensor. J Colloid Interface Sci 553:177–185

    Article  CAS  Google Scholar 

  45. Hu Q, Li T, Gao L, Gong X, Rao S, Fang W, Gu R, Yang Z (2018) Ultrafast and energy-saving synthesis of nitrogen and chlorine co-doped carbon nanodots via neutralization heat for selective detection of Cr (VI) in aqueous phase. Sensors 18(10):3416

    Article  Google Scholar 

  46. Wang Z, Yang Y, Zou T, Xing X, Zhao R, Wang Y (2020) Novel method for the qualitative identification of chromium ions (III) using L-aspartic acid stabilized CdS quantum dots. J Phys Chem Solids 136:109160

    Article  CAS  Google Scholar 

  47. Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HM (2019a) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66

    Article  CAS  Google Scholar 

  48. Rasheed T, Nabeel F, Adeel M, Bilal M, Iqbal HM (2019b) “Turn-on” fluorescent sensor-based probing of toxic Hg (II) and Cu (II) with potential intracellular monitoring. Biocatal Agric Biotechnol 17:696–701

    Article  Google Scholar 

  49. Yin Y, Yang Q, Liu G (2020) Ammonium pyrrolidine dithiocarbamate-modified CdTe/CdS quantum dots as a turn-on fluorescent sensor for detection of trace cadmium ions. Sensors 20(1):312

    Article  Google Scholar 

  50. Chen L, Lu Y, Qin M, Liu F, Huang L, Wang J, Xu H, Li N, Huang G, Luo Z, Zheng B (2020) Preparation of “ion-imprinting” difunctional magnetic fluorescent nanohybrid and its application to detect cadmium ions. Sensors 20(4):995

    Article  Google Scholar 

  51. Pandey SC, Kumar A, Sahu SK (2020) Single step green synthesis of carbon dots from murraya koenigii leaves; a unique turn-off fluorescent contrivance for selective sensing of Cd (II) ion. J Photochem Photobiol, A 400:112620

    Article  CAS  Google Scholar 

  52. Chang Q, Chen B, Thakur C, Lu Y, Chen F (2014) Arsenic-induced sub-lethal stress reprograms human bronchial epithelial cells to CD61 cancer stem cells. Oncotarget 5(5):1290

    Article  Google Scholar 

  53. Gupta A, Verma NC, Khan S, Nandi CK (2016) Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens Bioelectron 81:465–472

    Article  CAS  Google Scholar 

  54. Pathan S, Jalal M, Prasad S, Bose S (2019) Aggregation-induced enhanced photoluminescence in magnetic graphene oxide quantum dots as a fluorescence probe for As (III) sensing. J Mater Chem A 7(14):8510–8520

    Article  CAS  Google Scholar 

  55. Wu Y, Liu Y, Liu H, Liu B, Chen W, Xu L, Liu J (2020) Ion-mediated self-assembly of Cys-capped quantum dots for fluorescence detection of As (iii) in water. Anal Methods 12(34):4229–4234

    Article  CAS  Google Scholar 

  56. Isarov AV, Chrysochoos J (1997) Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) ions. Langmuir 13(12):3142–3149

    Article  CAS  Google Scholar 

  57. Xie HY (2004) Preparation and applications of biomedical functional nanomaterials based on quantum dots. PhD diss, Wuhan University

    Google Scholar 

  58. Yan YX, Mou Y, Jin QH (2007) A study about new tape of CdTe quantum dots for determination of copper ions. Life Sci Instrum 5:14–18

    Google Scholar 

  59. Xia YS (2007) Surface modification, size selection and fluorescent sensor of CdTe quantum dots. Master thesis, Anhui Normal University

    Google Scholar 

  60. Li J, Bao D, Hong X, Li D, Li J, Bai Y, Li T (2005) Luminescent CdTe quantum dots and nanorods as metal ion probes. Colloids Surf, A 257:267–271

    Article  Google Scholar 

  61. Na J, Ming H (2010) CdTe quantum dot fluorescence probe for the determination of trace vanadium. Anal Chem 397:3589–3593

    Article  Google Scholar 

  62. Ali EM, Zheng YG, Yu HH, Ying JY (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79:9452–9458

    Article  CAS  Google Scholar 

  63. Singh A, Guleria A, Neogy S, Rath MC (2020) UV induced synthesis of starch capped CdSe quantum dots: functionalization with thiourea and application in sensing heavy metals ions in aqueous solution. Arab J Chem 13(1):3149–3158

    Article  CAS  Google Scholar 

  64. Liu J, Zhang Q Xue W, Zhang H, Bai Y, Wu L … Jin G (2019) Fluorescence characteristics of aqueous synthesized tin oxide quantum dots for the detection of heavy metal ions in contaminated water. Nanomaterials 9(9):1294

    Google Scholar 

  65. Elfeky SA (2018) Facile sensor for heavy metals based on thiol-capped CdTe quantum dot. J Environ Anal Chem 5(01):1–5

    Article  Google Scholar 

  66. Baslak C (2019) Development of fluorescence-based optical sensors for detection of Cr (III) ions in water by using quantum nanocrystals. Res Chem Intermed 45(7):3633–3640

    Article  CAS  Google Scholar 

  67. Radhakrishnan K, Sivanesan S, Panneerselvam P (2020) Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots@ graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol, A 389:112204

    Article  CAS  Google Scholar 

  68. Chini MK, Kumar V, Javed A, Satapathi S (2019) Graphene quantum dots and carbon nano dots for the FRET based detection of heavy metal ions. Nano-Struct Nano-Objects 19:100347

    Article  CAS  Google Scholar 

  69. Yarur F, Macairan JR, Naccache R (2019) Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environ Sci Nano 6(4):1121–1130

    Article  CAS  Google Scholar 

  70. Buledi JA, Amin S, Haider SI, Bhanger MI, Solangi AR (2021) A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ Sci Pollut Res 28(42):58994–59002

    Article  Google Scholar 

  71. Yan F, Zou Y, Wang M, Mu X, Yang N, Chen L (2014) Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sens Actuators, B Chem 192:488–495

    Article  CAS  Google Scholar 

  72. Liu T, Dong JX, Liu SG, Li N, Lin SM, Fan YZ, Lei JL, Luo HQ, Li NB (2017a) Carbon quantum dots prepared with polyethyleneimine as both reducing agent and stabilizer for synthesis of Ag/CQDs composite for Hg2+ ions detection. J Hazard Mater 322:430–436

    Article  CAS  Google Scholar 

  73. Liu W, Diao H, Chang H, Wang H, Li T, Wei W (2017b) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sens Actuators, B Chem 241:190–198

    Article  Google Scholar 

  74. Liu Y, Zhou Q, Yuan Y, Wu Y (2017c) Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate. Carbon 115:550–560

    Article  CAS  Google Scholar 

  75. Choudhary R, Madhuri R, Sharma PK (2017) Detection of Hg2+ ion using fluorescent carbon dots derived from elephant foot yum via green-chemistry. In: AIP conference proceedings, vol 1832, no 1. AIP Publishing LLC, p 050010

    Google Scholar 

  76. Saikia A, Karak N (2018) Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As (III) in water and effective antioxidant. Mater Today Commun 14:82–89

    Article  CAS  Google Scholar 

  77. Pooja D, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK (2017) A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater 328:117–126

    Article  CAS  Google Scholar 

  78. Radhakrishnan K, Panneerselvam P (2018) Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic (iii) and hypochlorite ions from drinking water. RSC Adv 8(53):30455–30467

    Article  CAS  Google Scholar 

  79. Song Q, Ma Y, Wang X, Tang T, Song Y, Ma Y, Xu G, Wei F, Cen Y, Hu Q (2018) “On-off-on” fluorescent system for detection of Zn2+ in biological samples using quantum dots-carbon dots ratiometric nanosensor. J Colloid Interface Sci 516:522–528

    Article  CAS  Google Scholar 

  80. Guo Y, Cao F, Li Y (2018) Solid phase synthesis of nitrogen and phosphor co-doped carbon quantum dots for sensing Fe3+ and the enhanced photocatalytic degradation of dyes. Sens Actuators, B Chem 255:1105–1111

    Article  Google Scholar 

  81. Rong MC, Zhang KX, Wang YR, Chen X (2017) The synthesis of B, N-carbon dots by a combustion method and the application of fluorescence detection for Cu2+. Chin Chem Lett 28(5):1119–1124

    Article  CAS  Google Scholar 

  82. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper (II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183(4):1409–1416

    Article  CAS  Google Scholar 

  83. Ma X, Dong Y, Sun H, Chen N (2017) Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: the optimization and analysis of the synthetic process. Mater Today Chem 5:1–10

    Article  CAS  Google Scholar 

  84. Mashkani M, Mehdinia A, Jabbari A, Bide Y, Nabid MR (2018) Preconcentration and extraction of lead ions in vegetable and water samples by N-doped carbon quantum dot conjugated with Fe3O4 as a green and facial adsorbent. Food Chem 239:1019–1026

    Article  CAS  Google Scholar 

  85. Liu Y, Zhou Q, Li J, Lei M, Yan X (2016) Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sens Actuators, B Chem 237:597–604

    Article  CAS  Google Scholar 

  86. Niu WJ, Shan D, Zhu RH, Deng SY, Cosnier S, Zhang XJ (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid. Carbon 96:1034–1042

    Article  CAS  Google Scholar 

  87. Zhang Z, Shi Y, Pan Y, Cheng X, Zhang L, Chen J, Li MJ, Yi C (2014) Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J Mater Chem B 2(31):5020–5027

    Article  CAS  Google Scholar 

  88. Yang M, Kong W, Li H, Liu J, Huang H, Liu Y, Kang Z (2015) Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc (II) ion. Microchim Acta 182(15):2443–2450

    Article  CAS  Google Scholar 

  89. Vaz R, Bettini J, Júnior JGF, Lima EDS, Botero WG, Santos JCC, Schiavon MA (2017) High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr (VI) determination in water and soil samples. J Photochem Photobiol, A 346:502–511

    Article  CAS  Google Scholar 

  90. Guo Y, Chen Y, Cao F, Wang L, Wang Z, Leng Y (2017) Hydrothermal synthesis of nitrogen and boron doped carbon quantum dots with yellow-green emission for sensing Cr (VI), anti-counterfeiting and cell imaging. RSC Adv 7(76):48386–48393

    Article  CAS  Google Scholar 

  91. Singh VK, Singh V, Yadav PK, Chandra S, Bano D, Kumar V, Koch B, Talat, Hasan SH (2018) Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nanoprobe for detection of Cr (VI) and ascorbic acid in pure aqueous solution and in living cells. New J Chem 42(15):12990–12997

    Google Scholar 

  92. Devi P, Kaur G, Thakur A, Kaur N, Grewal A, Kumar P (2017) Waste derivitized blue luminescent carbon quantum dots for selenite sensing in water. Talanta 170:49–55

    Article  CAS  Google Scholar 

  93. Wang Q, Zhang S, Zhong Y, Yang XF, Li Z, Li H (2017) Preparation of yellow-green-emissive carbon dots and their application in constructing a fluorescent turn-on nanoprobe for imaging of selenol in living cells. Anal Chem 89(3):1734–1741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the University Grants Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Uddin .

Editor information

Editors and Affiliations

Ethics declarations

The authors have declared no conflict of interest

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tauseef, A., Uddin, I. (2023). Synthesis of Quantum Dots and Its Application in Heavy Metal Sensing. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_10

Download citation

Publish with us

Policies and ethics