Skip to main content

Morphogenesis of Hepatitis E Virus

  • Chapter
  • First Online:
Hepatitis E Virus

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1417))

Abstract

Hepatitis E virus, a leading cause of acute hepatitis worldwide, has been recognized as non-enveloped virus since its discovery in the 1980s. However, the recent identification of lipid membrane-associated form termed as “quasi-enveloped” HEV has changed this long-held notion. Both naked HEV and quasi-enveloped HEV play important roles in the pathogenesis of hepatitis E. However, the biogenesis and the mechanisms underlying the composition, biogenesis regulation, and functions of the novel quasi-enveloped virions remain enigmatic. In this chapter, we highlight the most recent discoveries on the dual life cycle of these two different types of virions, and further discuss the implication of the quasi-envelopment in our understanding of the molecular biology of HEV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASGR:

Asialoglycoprotein receptor

ATP5B:

ATP synthase subunit β

eHEV:

Quasi-enveloped hepatitis E virus

ESCRT:

Endosomal sorting complex required for transport

ET-NANB:

Enterically transmitted non-A, non-B

HAV:

Hepatitis A virus

HEV:

Hepatitis E virus

HRS:

Hepatocyte growth factor-regulated tyrosine kinase substrate

HSC70:

Heat shock cognate protein 70

HSPGs:

Heparin sulfate proteoglycan

LAL:

Lysosomal acid lipase

MVB:

Multivesicular bodies

NPC1:

Niemann–Pick disease, type C1

PtdSer:

Phosphatidylserine

RBD:

Receptor binding domain

TGOLN2:

Trans-Golgi network protein 2

TSG101:

Tumor susceptibility gene 101

References

  1. Balayan MS et al (1983) Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology 20:23–31. https://doi.org/10.1159/000149370

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi M et al (2010) Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 48:1112–1125. https://doi.org/10.1128/JCM.02002-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barnaud E, Rogee S, Garry P, Rose N, Pavio N (2012) Thermal inactivation of infectious hepatitis E virus in experimentally contaminated food. Appl Environ Microbiol 78:5153–5159. https://doi.org/10.1128/AEM.00436-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Behrendt P et al (2022) Hepatitis E virus is highly resistant to alcohol-based disinfectants. J Hepatol 76:1062–1069. https://doi.org/10.1016/j.jhep.2022.01.006

    Article  CAS  PubMed  Google Scholar 

  5. Yin X, Ambardekar C, Lu Y, Feng Z (2016) Distinct entry mechanisms for nonenveloped and quasi-enveloped hepatitis E viruses. J Virol 90:4232–4242. https://doi.org/10.1128/JVI.02804-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagashima S et al (2017) Characterization of the quasi-enveloped hepatitis E virus particles released by the cellular exosomal pathway. J Virol 91:e00822–e00817. https://doi.org/10.1128/JVI.00822-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nagashima S et al (2011) Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. J Gen Virol 92:2838–2848. https://doi.org/10.1099/vir.0.035378-0

    Article  CAS  PubMed  Google Scholar 

  8. Nagashima S et al (2014) Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies. J Gen Virol 95:2166–2175. https://doi.org/10.1099/vir.0.066910-0

    Article  CAS  PubMed  Google Scholar 

  9. Xing L et al (2010) Structure of hepatitis E virion-sized particle reveals an RNA-dependent viral assembly pathway. J Biol Chem 285:33175–33183. https://doi.org/10.1074/jbc.M110.106336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xing L et al (1999) Recombinant hepatitis E capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes. Virology 265:35–45. https://doi.org/10.1006/viro.1999.0005

    Article  CAS  PubMed  Google Scholar 

  11. Guu TS et al (2009) Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding. Proc Natl Acad Sci U S A 106:12992–12997. https://doi.org/10.1073/pnas.0904848106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yamashita T et al (2009) Biological and immunological characteristics of hepatitis E virus-like particles based on the crystal structure. Proc Natl Acad Sci U S A 106:12986–12991. https://doi.org/10.1073/pnas.0903699106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tyagi S, Korkaya H, Zafrullah M, Jameel S, Lal SK (2002) The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. J Biol Chem 277:22759–22767. https://doi.org/10.1074/jbc.M200185200

    Article  CAS  PubMed  Google Scholar 

  14. Kenney SP, Wentworth JL, Heffron CL, Meng XJ (2015) Replacement of the hepatitis E virus ORF3 protein PxxP motif with heterologous late domain motifs affects virus release via interaction with TSG101. Virology 486:198–208. https://doi.org/10.1016/j.virol.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  15. Ding Q et al (2017) Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A 114:1147–1152. https://doi.org/10.1073/pnas.1614955114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aicart-Ramos C, Valero RA, Rodriguez-Crespo I (1808) Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 2981-2994:2011. https://doi.org/10.1016/j.bbamem.2011.07.009

    Article  CAS  Google Scholar 

  17. Gouttenoire J et al (2018) Palmitoylation mediates membrane association of hepatitis E virus ORF3 protein and is required for infectious particle secretion. PLoS Pathog 14:e1007471. https://doi.org/10.1371/journal.ppat.1007471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emerson SU et al (2010) Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. J Virol 84:9059–9069. https://doi.org/10.1128/jvi.00593-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allweiss L et al (2016) Human liver chimeric mice as a new model of chronic hepatitis E virus infection and preclinical drug evaluation. J Hepatol 64:1033–1040. https://doi.org/10.1016/j.jhep.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  20. Sayed IM et al (2017) Study of hepatitis E virus infection of genotype 1 and 3 in mice with humanised liver. Gut 66:920–929. https://doi.org/10.1136/gutjnl-2015-311109

    Article  CAS  PubMed  Google Scholar 

  21. He S et al (2008) Putative receptor-binding sites of hepatitis E virus. J Gen Virol 89:245–249. https://doi.org/10.1099/vir.0.83308-0

    Article  CAS  PubMed  Google Scholar 

  22. Cao D, Meng XJ (2012) Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect 1:e17. https://doi.org/10.1038/emi.2012.7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalia M, Chandra V, Rahman SA, Sehgal D, Jameel S (2009) Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 83:12714–12724. https://doi.org/10.1128/JVI.00717-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu H et al (2011) Homology model and potential virus-capsid binding site of a putative HEV receptor Grp78. J Mol Model 17:987–995. https://doi.org/10.1007/s00894-010-0794-5

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L et al (2016) Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol 88:2186–2195. https://doi.org/10.1002/jmv.24570

    Article  CAS  PubMed  Google Scholar 

  26. Shukla P et al (2011) Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus-host recombinant. Proc Natl Acad Sci U S A 108:2438–2443. https://doi.org/10.1073/pnas.1018878108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shukla P et al (2012) Adaptation of a genotype 3 hepatitis E virus to efficient growth in cell culture depends on an inserted human gene segment acquired by recombination. J Virol 86:5697–5707. https://doi.org/10.1128/JVI.00146-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li TC, Wakita T (2018) Small animal models of hepatitis E virus infection. Cold Spring Harb Perspect Med 9:a032581. https://doi.org/10.1101/cshperspect.a032581

    Article  CAS  Google Scholar 

  29. Das A et al (2017) TIM1 (HAVCR1) is not essential for cellular entry of either quasi-enveloped or naked hepatitis A virions. MBio 8:e00969. https://doi.org/10.1128/mBio.00969-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rivera-Serrano EE, Gonzalez-Lopez O, Das A, Lemon SM (2019) Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses. elife 8:e43983. https://doi.org/10.7554/eLife.43983

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grove J, Marsh M (2011) The cell biology of receptor-mediated virus entry. J Cell Biol 195:1071–1082. https://doi.org/10.1083/jcb.201108131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kapur N, Thakral D, Durgapal H, Panda SK (2012) Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J Viral Hepat 19:436–448. https://doi.org/10.1111/j.1365-2893.2011.01559.x

    Article  CAS  PubMed  Google Scholar 

  33. Yin X, Li X, Feng Z (2016) Role of envelopment in the HEV life cycle. Viruses 8:229. https://doi.org/10.3390/v8080229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tuthill TJ et al (2009) Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog 5:e1000620. https://doi.org/10.1371/journal.ppat.1000620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X et al (2015) Hepatitis A virus and the origins of picornaviruses. Nature 517:85–88. https://doi.org/10.1038/nature13806

    Article  CAS  PubMed  Google Scholar 

  36. Drexler JF et al (2015) Evolutionary origins of hepatitis A virus in small mammals. Proc Natl Acad Sci U S A 112:15190–15195. https://doi.org/10.1073/pnas.1516992112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao X et al (2019) Human neonatal Fc receptor is the cellular uncoating receptor for enterovirus B. Cell 177:1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergelson JM et al (1994) Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A 91:6245–6248. https://doi.org/10.1073/pnas.91.13.6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Renou C, Roque-Afonso AM, Pavio N (2014) Foodborne transmission of hepatitis E virus from raw pork liver sausage, France. Emerg Infect Dis 20:1945–1947. https://doi.org/10.3201/eid2011.140791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berto A et al (2013) Hepatitis E virus in pork liver sausage, France. Emerg Infect Dis 19:264–266. https://doi.org/10.3201/eid1902.121255

    Article  PubMed  PubMed Central  Google Scholar 

  41. Colson P et al (2010) Pig liver sausage as a source of hepatitis E virus transmission to humans. J Infect Dis 202:825–834. https://doi.org/10.1086/655898

    Article  PubMed  Google Scholar 

  42. Sayed IM et al (2016) Study of hepatitis E virus infection of genotype 1 and 3 in mice with humanised liver. Gut 66:920. https://doi.org/10.1136/gutjnl-2015-311109

    Article  CAS  PubMed  Google Scholar 

  43. Jones MK et al (2014) Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346:755–759. https://doi.org/10.1126/science.1257147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marion O, Lhomme S, Nayrac M, Dubois M, Izopet J (2019) Hepatitis E virus replication in human intestinal cells. Gut 69:901

    Article  PubMed  Google Scholar 

  45. Williams TP et al (2001) Evidence of extrahepatic sites of replication of the hepatitis E virus in a swine model. J Clin Microbiol 39:3040–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van de Garde MD et al (2016) Hepatitis E virus (HEV) genotype 3 infection of human liver chimeric mice as a model for chronic HEV infection. J Virol 90:4394–4401. https://doi.org/10.1128/JVI.00114-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hewitt PE et al (2014) Hepatitis E virus in blood components: a prevalence and transmission study in southeast England. Lancet 384:1766–1773. https://doi.org/10.1016/S0140-6736(14)61034-5

    Article  PubMed  Google Scholar 

  48. Gallian P et al (2014) Hepatitis E virus infections in blood donors, France. Emerg Infect Dis 20:1914–1917. https://doi.org/10.3201/eid2011.140516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kurihara T et al (2016) Chronic hepatitis E virus infection after living donor liver transplantation via blood transfusion: a case report. Surg Case Rep 2:32. https://doi.org/10.1186/s40792-016-0159-0

    Article  PubMed  PubMed Central  Google Scholar 

  50. Elayan H, Kennedy B, Ziegler MG (1992) Propranolol reduces rat dopamine-beta-hydroxylase activity and catecholamine levels. Eur J Pharmacol 212:259–262. https://doi.org/10.1016/0014-2999(92)90339-6

    Article  CAS  PubMed  Google Scholar 

  51. Zhou X et al (2017) Hepatitis E virus infects neurons and brains. J Infect Dis 215:1197–1206. https://doi.org/10.1093/infdis/jix079

    Article  CAS  PubMed  Google Scholar 

  52. Drave SA et al (2016) Extra-hepatic replication and infection of hepatitis E virus in neuronal-derived cells. J Viral Hepat 23:512–521. https://doi.org/10.1111/jvh.12515

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., Qi, S., Yin, X. (2023). Morphogenesis of Hepatitis E Virus. In: Wang, Y. (eds) Hepatitis E Virus. Advances in Experimental Medicine and Biology, vol 1417. Springer, Singapore. https://doi.org/10.1007/978-981-99-1304-6_11

Download citation

Publish with us

Policies and ethics