Skip to main content

Radial Basis Function Neural Network Based Fast Directional Modulation Design

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 873))

  • 303 Accesses

Abstract

For directional modulation (DM) based on antenna arrays, the associated weight coefficients are normally calculated by some traditional optimisation methods. In this paper, a radial basis function (RBF) based neural network is proposed for fast directional modulation design, which is trained by data corresponding to sets of transmission direction and interference direction angles with the corresponding weight coefficients. The proposed method takes advantage of the strong nonlinear function approximation capability of the RBF neural network, and simulation results are provided to show the effectiveness of the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babakhani, A., Rutledge, D.B., Hajimiri, A.: Transmitter architectures based on near-field direct antenna modulation. IEEE J. Solid-State Circuits 43(12), 2674–2692 (2008)

    Article  Google Scholar 

  2. Babakhani, A., Rutledge, D.B., Hajimiri, A.: Near-field direct antenna modulation. IEEE Microwave Mag. 10(1), 36–46 (2009)

    Article  Google Scholar 

  3. Daly, M.P., Bernhard, J.T.: Directional modulation technique for phased arrays. IEEE Trans. Antennas Propag. 57(9), 2633–2640 (2009)

    Article  Google Scholar 

  4. Daly, M.P., Daly, E.L., Bernhard, J.T.: Demonstration of directional modulation using a phased array. IEEE Trans. Antennas Propag. 58(5), 1545–1550 (2010)

    Article  Google Scholar 

  5. Daly, M.P., Bernhard, J.T.: Directional modulation and coding in arrays. In: 2011 IEEE international symposium on antennas and propagation (APSURSI), pp. 1984-1987. IEEE (2011)

    Google Scholar 

  6. HongZhe, S., Alan, T.: Direction dependent antenna modulation using a two element array. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 812-815. IEEE (2011)

    Google Scholar 

  7. Zhang, B., Liu, W., Gou, X.: Sparse antenna array design for directional modulation. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1-5. IEEE (2016)

    Google Scholar 

  8. Roy, A., Govil, S., Miranda, R.: A neural-network learning theory and a polynomial time RBF algorithm. IEEE Trans. Neural Networks 8(6), 1301–1313 (1997)

    Article  Google Scholar 

  9. Vt, S.E., Shin, Y.C.: Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Networks 5(4), 594–603 (1994)

    Article  Google Scholar 

  10. Nabney, I.T.: Efficient training of RBF networks for classification. Int. J. Neural Syst. 14(03), 201–208 (2004)

    Article  Google Scholar 

  11. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  12. Soussen, C., Gribonval, R., Idier, J., et al.: Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares. IEEE Trans. Inf. Theory 59(5), 3158–3174 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recogn. 36(2), 451–461 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the National Natural Science Foundation of China (62101383) and Science and technology project of Hedong District (TJHD-JBGS-2022-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Zhang or Baoju Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, M. et al. (2023). Radial Basis Function Neural Network Based Fast Directional Modulation Design. In: Liang, Q., Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2022. Lecture Notes in Electrical Engineering, vol 873. Springer, Singapore. https://doi.org/10.1007/978-981-99-1260-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1260-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1259-9

  • Online ISBN: 978-981-99-1260-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics