Skip to main content

Fault Diagnosis of the Power Transformer Based on PSO-SVM

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 873))

  • 310 Accesses

Abstract

Transformers play an important role in power systems. Dissolved gases analysis (DGA) has been widely used in the transformer fault diagnosis. A novel fault diagnosis method using support vector machine (SVM) with particle swarm optimization (PSO) algorithm is developed for transformer in this paper. To enhance the ability and performance of SVM, the particle swarm algorithm is used to optimize the parameters of SVM in this study. The proposed model is named PSO-SVM. Then, the optimized model was applied to identify and classify the faults. The diagnostic accuracy of the proposed PSO-SVM model reached 82%. Results demonstrate that the superior performance of the PSO-SVM, compared with the ordinary support vector machine classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seifeddine, S., Khmais, B., Abdelkader, C.: Power transformer fault diagnosis based on dissolved gas analysis by artificial neural network. In: 2012 First International Conference on Renewable Energies and Vehicular Technology, pp. 230–236. IEEE (2012). DOI:https://doi.org/10.1109/REVET.2012.6195276

  2. Bacha, K., Souahlia, S., Gossa, M.: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric Power Syst. Res. 83(1), 73–79 (2012). https://doi.org/10.1016/j.epsr.2011.09.012

    Article  Google Scholar 

  3. Ghoneim, S., Shoush, K.A.: Diagnostic tool for transformer fault detection based on dissolved gas analysis. Adv. Electr. Eng. Syst. (3), 152–156 (2014). DOI:https://doi.org/10.9790/1676-09532026

  4. Zhang, Y., Ding, X., Liu, Y., et al.: An artificial neural network approach to transformer fault diagnosis. IEEE Trans. Power Delivery 11(4), 1836–1841 (1996). https://doi.org/10.1109/61.544265

    Article  Google Scholar 

  5. Mohamed, E.A., Abdelaziz, A.Y., Mostafa, A.S.: A neural network-based scheme for fault diagnosis of power transformers. Electric Power Syst. Res. 75(1), 29–39 (2005). https://doi.org/10.1016/j.epsr.2004.11.013

    Article  Google Scholar 

  6. Sun, Y., Zhang, S., Miao, C., et al.: Improved BP neural network for transformer fault diagnosis. J. China Univ. Min. Technol. 17(1), 138–142 (2007). https://doi.org/10.1016/S1006-1266(07)60029-7

    Article  Google Scholar 

  7. Afrasiabi, M., Afrasiabi, S., Parang, B., et al.: Power transformers internal fault diagnosis based on deep convolutional neural networks. J. Intell. Fuzzy Syst. 37(1), 1165–1179 (2019). https://doi.org/10.3233/JIFS-182615

    Article  Google Scholar 

  8. Kim, S., Jo, S.H., Kim, W., et al.: A semi-supervised autoencoder with an auxiliary task (SAAT) for power transformer fault diagnosis using dissolved gas analysis. IEEE Access 8, 178295–178310 (2020). https://doi.org/10.1109/ACCESS.2020.3027830

    Article  Google Scholar 

  9. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

    Book  MATH  Google Scholar 

  10. Fei, S., Zhang, X.: Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Syst. Appl. 36(8), 11352–11357 (2009). https://doi.org/10.1016/j.eswa.2009.03.022

    Article  Google Scholar 

  11. Kari, T., Gao, W., Zhao, D., et al.: Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm. IET Gener. Transm. Distrib. 12(21), 5672–5680 (2018). https://doi.org/10.1049/iet-gtd.2018.5482

    Article  Google Scholar 

  12. Tang, W.H., Goulermas, J.Y., Wu, Q.H., et al.: A probabilistic classifier for transformer dissolved gas analysis with a particle swarm optimizer. IEEE Trans. Power Delivery 23(2), 751–759 (2008). https://doi.org/10.1109/TPWRD.2008.915812

    Article  Google Scholar 

  13. Zhang, L., Yuan, J.: Fault diagnosis of power transformers using kernel based extreme learning machine with particle swarm optimization. Appl. Math. Inf. Sci. 9(2), 1003 (2015). https://doi.org/10.12785/amis/090251

    Article  Google Scholar 

  14. Cao, Z., Chen, C., Chen, Y., et al.: Application of particle swarm optimization algorithm in power transformer fault diagnosis. J. Phys. Conf. Ser. IOP Publishing, 1624(4), 042022 (2020). https://doi.org/10.1088/1742-6596/1624/4/042022

  15. Liu, T., Wang, Z.: Design of power transformer fault diagnosis model based on support vector machine. International symposium on intelligent ubiquitous computing and education. IEEE 2009, 137–140 (2009). https://doi.org/10.1109/IUCE.2009.59

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the key technology project of the State Grid Corporation of China under Grant 522821200090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, X., Liu, Z., Shi, Z., Ma, L., Du, H., Han, D. (2023). Fault Diagnosis of the Power Transformer Based on PSO-SVM. In: Liang, Q., Wang, W., Liu, X., Na, Z., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2022. Lecture Notes in Electrical Engineering, vol 873. Springer, Singapore. https://doi.org/10.1007/978-981-99-1260-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1260-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1259-9

  • Online ISBN: 978-981-99-1260-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics