Skip to main content

Scientometric Analysis of Ecotoxicological Investigations of Xenobiotics in Aquatic Animals

  • Chapter
  • First Online:
Xenobiotics in Aquatic Animals

Abstract

Environmental xenobiotic pollution during the past 40 years has increased quickly, as has living creatures’ consumption of them. It is possible that the ecosystems’ exposure to these compounds will result in an increase in allergic reactions, organism mortality, and genetic changes, weakened immune systems, metabolic issues, and disruptions of natural ecosystem processes, particularly in aquatic environments, up to the level of the biosphere. The current analysis uses the Web of Science database (WoS) to depict the Xenobiotics research output in fish from 1988 to 2022. The analysis used 33,056 papers in total to assess the output of scientific research in this particular field worldwide publishing share, position and its advancement in research, as well as bibliometric indicators like total citations, and the typical number of citations per manuscript were examined. The United States rated top in total publications among the most productive nations and represented 30.38% of the total publications number of publications. The network visualisation map showed the leading cooperating nations to be Germany, France, the United States, and China; nonetheless, it was discovered that international cooperation was only fairly high. The research revealed that with India being the exception, the industrialised nations have made significant contributions to xenobiotics research in fish. The findings of this study were the prevalence of research studies on ‘Xenobiotics in Fish’ and ‘Effect of Xenobiotics in Fish’ published during 1988–2022. This investigation also highlighted the areas of this subject that have received a lot of attention. Researchers in the same discipline can decide on the next directions of the study. This study also recommends intensifying research on important problems and solutions since these xenobiotics has a lot of potential to harm aquatic habitats and associated creatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai-guo Z, Ping S, He G (2011) The technology of VR and its application in the experimental teaching of plant physiology. In: 2011 International Conference on E-Business and E-Government (ICEE). IEEE, pp 1–2

    Google Scholar 

  • Applications of Virtual Reality in Medicine, https://www.news-medical.net/health/Applications-of-Virtual-Reality-in-Medicine.aspx

  • Arya P, Haq SA (2019) Effects of xenobiotics and their biodegradation in marine life. In: Smart bioremediation technologies. Academic Press, pp 63–81

    Google Scholar 

  • Augmented Reality and Virtual Reality (AR & VR) Market size is expected to reach USD 571.42 Billion by 2025. Valuates Reports

    Google Scholar 

  • Bednarz T, Kim J, Brown R, James A, Burrage K, Clifford S, Davis J, Mengersen K, Peterson E, Psaltis S, Vercelloni J (2016) Virtual reality for conservation. In: Proceedings of the 21st international conference on web3d technology, pp 177–178

    Chapter  Google Scholar 

  • Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S (2021) Plasmid-mediated catabolism for the removal of xenobiotics from the environment. J Hazard Mater 420:126618

    Article  CAS  PubMed  Google Scholar 

  • Blascovich J, Loomis J, Beall AC, Swinth KR, Hoyt CL, Bailenson JN (2002) Immersive virtual environment technology as a methodological tool for social psychology. Psychol Inq 13(2):103–124

    Article  Google Scholar 

  • Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7):36–43

    Article  Google Scholar 

  • Brandts I, Solà R, Martins MA, Tvarijonaviciute A, Barreto A, Teles M, Oliveira M (2021) A baseline study on the impact of nanoplastics on the portals of entry of xenobiotics in fish. Mar Pollut Bull 173:113018

    Article  CAS  PubMed  Google Scholar 

  • Cassidy B, Sim G, Robinson DW, Gandy D (2019) A virtual reality platform for analyzing remote archaeological sites. Interact Comput 31(2):167–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandana GL, Kote NV, Sharath Chandra SP (2020) Recent scenario of impact of xenobiotics on marine fish: an overview. Pharm J 12(6s):1797–1800

    Google Scholar 

  • Christou C (2010) Virtual reality in education. In: Affective, interactive and cognitive methods for e-learning design: creating an optimal education experience. IGI Global, pp 228–243

    Chapter  Google Scholar 

  • Collins SL, Patterson AD (2020) The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 10(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Cuesta Cambra U, Manas Viniegra L (2016) Integration of immersive virtual reality in communication degrees. Revista Icono 14-Revista Cientifica De Comunicacion Y Tecnologias 14(2)

    Google Scholar 

  • Curpan AS, Impellitteri F, Plavan G, Ciobica A, Faggio C (2022) Mytilus galloprovincialis: an essential, low-cost model organism for the impact of xenobiotics on oxidative stress and public health. Comp Biochem Physiol C Toxicol Pharmacol 256:109302

    Article  CAS  PubMed  Google Scholar 

  • Dar SA, Chatterjee A, Rather MA, Chetia D, Srivastava PP, Gupta S (2020) Identification, functional characterization and expression profiling of cytochrome p450 1A (CYP1A) gene in Labeo rohita against emamectin benzoate. Int J Biol Macromol 158:1268–1278

    Article  CAS  Google Scholar 

  • Di Natale AF, Repetto C, Riva G, Villani D (2020) Immersive virtual reality in K-12 and higher education: a 10-year systematic review of empirical research. Br J Educ Technol 51(6):2006–2033

    Article  Google Scholar 

  • Esteves F, Rueff J, Kranendonk M (2021) The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family. J Xenobiot 11(3):94–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Experience your carbon footprint in VR, https://www.unep.org/news-and-stories/story/experience-your-carbon-footprint-vr

  • Extended Reality in Machine Maintenance and Repair, https://www.onewatt.eu/post/extended-reality-in-machine-maintenance-and-repair

  • Faggio C, Tsarpali V, Dailianis S (2018) Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Sci Total Environ 636:220–229

    Article  CAS  PubMed  Google Scholar 

  • Freina L, Ott M (2015) A literature review on immersive virtual reality in education: state of the art and perspectives. In: The international scientific conference elearning and software for education, vol 1, no 133, pp 10–1007

    Google Scholar 

  • Gan J, Ashraf SS, Bilal M, Iqbal HM (2022) Biodegradation of environmental pollutants using catalase-based biocatalytic systems. Environ Res 214(Pt 2):113914

    Article  CAS  PubMed  Google Scholar 

  • Gavish N, Gutiérrez T, Webel S, Rodríguez J, Peveri M, Bockholt U, Tecchia F (2015) Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact Learn Environ 23(6):778–798

    Article  Google Scholar 

  • Global AR and VR Market to Reach USD 165.3 billion by 2027. https://www.vynzresearch.com/ict-media/augmented-reality-and-virtual-reality-market

  • Go US West Coast Fishing in Real VR Fishing’s Upcoming DLC – VRFocus, https://kalem.easterndns.com/news/2021/12/01/go-us-west-coast-fishing-in-real-vr-fishings-upcoming-dlc-vrfocus/

  • Gupta SK, Singh B, Mungray AK, Bharti R, Nema AK, Pant KK, Mulla SI (2022) Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustain Energ Technol Assessm 49:101652

    Google Scholar 

  • Harrington CM, Kavanagh DO, Quinlan JF, Ryan D, Dicker P, O’Keeffe D, Tierney S (2018) Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. Am J Surg 215(1):42–47

    Article  PubMed  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 102(46):16569–16572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibañez-Etxeberria A, Gómez-Carrasco CJ, Fontal O, García-Ceballos S (2020) Virtual environments and augmented reality applied to heritage education. An evaluative study. Appl Sci 10(7):2352

    Article  Google Scholar 

  • Jaffe JS, Laxton B, Zylinski S (2011) The Sub Sea holodeck: a 14-megapixel immersive virtual environment for studying cephalopod camouflage behavior. In: OCEANS 2011 IEEE-Spain. IEEE, pp 1–6

    Google Scholar 

  • Jensen L, Konradsen F (2018) A review of the use of virtual reality head-mounted displays in education and training. Educ Inf Technol 23(4):1515–1529

    Article  Google Scholar 

  • Josef N (2018) Cephalopod experimental projected habitat (CEPH): virtual reality for underwater organisms. Front Mar Sci 5:73

    Article  Google Scholar 

  • Jung S, Choi YS, Choi JS, Koo BK, Lee WH (2013) Immersive virtual aquarium with real-walking navigation. In: Proceedings of the 12th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry, pp 291–294

    Chapter  Google Scholar 

  • Kalyvioti K, Mikropoulos TA (2014) Virtual environments and dyslexia: a literature review. Proc Comp Sci 27:138–147

    Article  Google Scholar 

  • Khalil GM, Crawford CAG (2015) A bibliometric analysis of US-based research on the behavioral risk factor surveillance system. Am J Prev Med 48(1):50–57

    Article  PubMed  Google Scholar 

  • Kucherenko SV, Ovcharenko AM, Pushenko SL (2021) Xenobiotics: a threat to the health of living organisms. In: E3S web of conferences, vol 285. EDP Sciences, p 03006

    Google Scholar 

  • Kumar M, Gurjar UR, Keer NR, Kumar S (2018) Professional fisheries education in India: history, current status and future-a review. Int J Curr Microbiol App Sci 7(6):3395–3409

    Article  Google Scholar 

  • Liou WK, Chang CY (2018) February. Virtual reality classroom applied to science education. In: 2018 23rd international scientific-professional conference on information technology (IT). IEEE, pp 1–4

    Google Scholar 

  • Maculewicz J, Świacka K, Kowalska D, Stepnowski P, Stolte S, Dołżonek J (2020) In vitro methods for predicting the bioconcentration of xenobiotics in aquatic organisms. Sci Total Environ 739:140261

    Article  CAS  PubMed  Google Scholar 

  • Malchi T, Eyal S, Czosnek H, Shenker M, Chefetz B (2022) Plant pharmacology: insights into in-planta kinetic and dynamic processes of xenobiotics. Crit Rev Environ Sci Technol 52(19):3525–3546

    Article  CAS  Google Scholar 

  • Martínez FP (2011) Presente y Futuro de la Tecnología de la Realidad Virtual. Creatividad y sociedad 16:1–39

    Google Scholar 

  • Mikropoulos TA, Strouboulis V (2004) Factors that influence presence in educational virtual environments. Cyberpsychol Behav 7(5):582–591

    Article  PubMed  Google Scholar 

  • Mishra VK, Singh G, Shukla R (2019) Impact of xenobiotics under a changing climate scenario. In: Climate change and agricultural ecosystems. Woodhead Publishing, pp 133–151

    Chapter  Google Scholar 

  • Mohapatra S, Kumar R, Sundaray JK, Patnaik ST, Mishra CSK, Rather MA (2021) Structural damage in liver, gonads, and reduction in spawning performance and alteration in the haematological parameter of Anabas testudineus by glyphosate-a herbicide. Aquac Res 52(3):1150–1159

    Article  CAS  Google Scholar 

  • Morina N, Ijntema H, Meyerbröker K, Emmelkamp PM (2015) Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav Res Ther 74:18–24. https://doi.org/10.1016/j.brat.2015.08.010

    Article  PubMed  Google Scholar 

  • Opriş D, Pintea S, García-Palacios A, Botella C, Szamosközi Ş, David D (2012) Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis. Depress Anxiety 29(2):85–93. https://doi.org/10.1002/da.20910

    Article  PubMed  Google Scholar 

  • Ortiz P, Torres-Sánchez A, López-Moreno A, Cerk K, Ruiz-Moreno Á, Monteoliva-Sánchez M, Ampatzoglou A, Aguilera M, Gruszecka-Kosowska A (2022) Impact of cumulative environmental and dietary xenobiotics on human microbiota: risk assessment for one health. J Xenobiot 12(1):56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchuk D, Klusemann MJ, Hadlow SM (2018) Exploring the effectiveness of immersive video for training decision-making capability in elite, youth basketball players. Front Psychol 9:2315

    Article  PubMed  PubMed Central  Google Scholar 

  • Parmaxi A (2020) Virtual reality in language learning: a systematic review and implications for research and practice. Interact Learn Environ 31(3):1–13

    Google Scholar 

  • Pestek A, Sarvan M (2020) Virtual reality and modern tourism. J Tour Futur 7(2):245–250

    Article  Google Scholar 

  • Singla JG (2021) Virtual reality based novel use case in remote sensing and GIS. Curr Sci 121(7):958

    Article  Google Scholar 

  • Slater M (2003) A note on presence terminology. Presen Conn 3(3):1–5

    Google Scholar 

  • Smart Farming is Ready for Augmented and Virtual Reality, https://www.agritechtomorrow.com/article/2020/11/smart-farming-is-ready-for-augmented-and-virtual-reality/12516

  • Sports, https://www.strivr.com/solutions/industries/sports/#:~:text=A%20Virtual%20Reality%20(VR)%20sports,best%20when%20it%20truly%20matters

  • Štefanac T, Grgas D, Landeka Dragičević T (2021) Xenobiotics—division and methods of detection: a review. J Xenobiot 11(4):130–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Testa B (1955) The metabolism of drugs and other xenobiotics: biochemistry of redox reactions. Academic Press

    Google Scholar 

  • Tonelli FCP, Tonelli FMP (2020) Concerns and threats of xenobiotics on aquatic ecosystems. In: Bioremediation and biotechnology, vol 3. Springer, Cham, pp 15–23

    Chapter  Google Scholar 

  • Uses of VR in Military Training, https://www.futurevisual.com/blog/uses-vr-military-training/

  • Van Eck NJ, Waltman L, Dekker R, Van Den Berg J (2010) A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS. J Am Soc Inf Sci Technol 61(12):2405–2416

    Article  Google Scholar 

  • Vet Med Library Information: VR Anatomy, https://guides.lib.vt.edu/vetmed/vranatomy

  • Virtual Reality for the Entertainment Market: All You Need to Know to Make Investment Decisions, https://jasoren.com/virtual-reality-for-the-entertainment/

  • VR AR Content Creation Market Ecosystem. Trend, Revenue and growth rate analysis along with decision intelligence – All The Research

    Google Scholar 

  • VR for Science: Drug Discovery and More in the Virtual World, https://www.labcompare.com/10-Featured-Articles/577506-VR-for-Science-Drug-Discovery-and-More-in-the-Virtual-World/

  • VR in manufacturing, https://www.xcubelabs.com/blog/the-applications-of-virtual-reality-in-the-manufacturing-industry/

  • Walcutt NL, Knörlein B, Sgouros T, Cetinić I, Omand MM (2019) Virtual reality and oceanography: overview, applications, and perspective. Front Mar Sci 6:644

    Article  Google Scholar 

  • Waltman L, Van Eck NJ, Noyons EC (2010) A unified approach to mapping and clustering of bibliometric networks. J Informet 4(4):629–635

    Article  Google Scholar 

  • Wang X, Sial MU, Bashir MA, Bilal M, Raza QUA, Ali Raza HM, Rehim A, Geng Y (2022) Pesticides xenobiotics in soil ecosystem and their remediation approaches. Sustainability 14(6):3353

    Article  CAS  Google Scholar 

  • Webster R (2016) Declarative knowledge acquisition in immersive virtual learning environments. Interact Learn Environ 24(6):1319–1333

    Article  Google Scholar 

  • Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Qiao Z, Tanaka H, Yang Y (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ 627:1253–1263

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bejawada Chanikya Naidu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanikya Naidu, B., Sahana, M.D., Hoque, M., Abuthagir Iburahim, S. (2023). Scientometric Analysis of Ecotoxicological Investigations of Xenobiotics in Aquatic Animals. In: Rather, M.A., Amin, A., Hajam, Y.A., Jamwal, A., Ahmad, I. (eds) Xenobiotics in Aquatic Animals. Springer, Singapore. https://doi.org/10.1007/978-981-99-1214-8_15

Download citation

Publish with us

Policies and ethics