Skip to main content

Abstract

The introduction of biosurfactants into modern study has sparked avenues of research across many areas, as a result of their low ecotoxicity, biodegradability, tolerance to environmental extremes, and their inherent ability to reduce surface/interfacial tensions. This has led researchers to assess the current barriers which prevent their large-scale industrial use, a significant factor of which is their high production cost. Researchers have also been pondering how to enhance our ability to discover new biosurfactants, increase their production rates, and, additionally, how to use them to answer big issues such as plastic pollution. This article will be looking into the answers that literature has so far generated in dealing with such questions, covering the development of biosurfactant screening technologies and the movement from traditional optimization strategies to biotechnological strategies, while dealing with how the two are able to be used together to further maximize final yields. Furthermore, the properties of biosurfactants which have been highlighted in previous research and how these may potentially be utilized in dealing with plastic pollution, namely the issue of microplastic output from wastewater facilities will be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Mawgoud AH, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223(1–3):143–151

    Article  CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  PubMed  Google Scholar 

  • Araújo HWC, Andrade RFS, Montero-Rodríguez D, Rubio-Ribeaux D, Alves da Silva CA, Campos-Takaki GM (2019) Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb Cell Factories 18(2):2

    Article  Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494

    Article  CAS  PubMed  Google Scholar 

  • Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8:14–24

    Article  CAS  PubMed  Google Scholar 

  • Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, Omari KE, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HE, McGeehan JE, Beckham GT (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. PNAS 115(19):E4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Bodour AA, Miller-Maier RM (1998) Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32(3):273–280

    Article  CAS  Google Scholar 

  • Carrillo PG, Mardaraz C, Pitta-Alvarez SI, Giulietti AM (1996) Isolation and selection of biosurfactant producing bacteria. World J Microbiol Biotechnol 12:82–84

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Sun N, Li D, Long S, Tang X, Xiao G, Wang L (2018) Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Environ Sci Pollut Res 25(15):14934–14943

    Article  CAS  Google Scholar 

  • Cipinyte V, Grigiskis S, Sapokaite D, Baskys E (2011) Production of biosurfactants by Arthrobacter sp. N3, a hydrogen degrading bacterium. In: Proceedings of the 8th international scientific and practical conference, vol 1, pp 68–75

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour Technol 100(2):1015–1019

    Article  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghannoudeh G, Kiani K, Moshafi MH, Dehghannoudeh N, Rajaee M, Salarpour S, Ohadi M (2019) Optimizing the immobilization of biosurfactant- producing Pseudomonas aeruginosa in alginate beads. J Pharm Pharmacogn Res 7(6):413–420

    CAS  Google Scholar 

  • Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJC, Weber MM, Rahman PKSM (2013) Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 27(1):159–184

    Article  Google Scholar 

  • Eldin AM, Kamel Z, Hossam N (2019) Isolation and genetic identification of yeast producing biosurfactants, evaluated by different screening methods. Microchem J 146:309–314

    Article  CAS  Google Scholar 

  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):1–15

    Article  Google Scholar 

  • Fenibo OE, Douglas SI, Stanley HO (2019) A review of microbial surfactants: production, classifications, properties and characterization. J Adv Microbiol 18(3):1–22

    Article  Google Scholar 

  • Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Food Sci Technol 3:286–293

    Article  CAS  Google Scholar 

  • Geys R, Soetaert W, Van Bogaert I (2014) Biotechnical opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72

    Article  CAS  PubMed  Google Scholar 

  • Guerra-Santos L, Kappeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48(2):301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Ni Y, Lu L, Chai Q, Yu T, Shen Z, Yng C (2019) Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils. Chemosphere 242:1–10

    Google Scholar 

  • Healy MG, Devine CM, Murphy R (1996) Microbial production of biosurfactants. Resour Conserv Recycl 18:41–57

    Article  Google Scholar 

  • Hu F, Liu Y, Li S (2019) Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microb Cell Factories 18(42):1–13

    Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4):271–279

    Article  Google Scholar 

  • Kiran GS, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59(3):432–438

    Article  CAS  PubMed  Google Scholar 

  • Kulper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51(1):97–113

    Google Scholar 

  • Lin SC, Lin KG, Lo CC, Lin YM (1998) Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzym Microb Technol 23(3–4):267–273

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(5):1–19

    Google Scholar 

  • Mamoon MDZS, Maimun OAI (2019) Using dissemination of antibiotic resistant bacteria (ARB) and resistance genes (ARG) for wastewater treatment. Int J Eng Adv Technol Stud 7(2):25–33

    Google Scholar 

  • Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactants. Songklanakarin J Sci Technol 29(3):781–791

    Google Scholar 

  • Maqsood MI, Jamal A (2011) Factors affecting the rhamnolipid biosurfactant production. Pakistan J Biotechnol 8(1):1–5

    Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30(11):558–565

    Article  CAS  PubMed  Google Scholar 

  • Mason SA, Garneau D, Sutton R, Chu Y, Ehmann K, Barnes J, Fink P, Papazissimos D, Rogers DL (2016) Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut 218:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Mehdi H, Giti E (2008) Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. Int Biodeterior Biodegrad 62(2):170–178

    Article  CAS  Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858

    Article  CAS  PubMed  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488(3):211–218

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN (2004) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    Article  Google Scholar 

  • Mulligan CN, Cooper DG, Neufeld RJ (1984) Selection of microbes producing biosurfactants in media without hydrocarbons. J Ferment Technol 62(4):311–314

    CAS  Google Scholar 

  • Nwaguma IV, Chikere CB, Okpokwasili GC (2019) Isolation and molecular characterization of biosurfactant-producing yeasts from saps of Elaeis guineensis and Raphia africana. Microbiol Res J Int 29(4):1–12

    Article  Google Scholar 

  • Pacwa-Płociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman P, Gakpe E (2008) Product, characterization and applications of biosurfactants-review. Biotechnology 7(2):360–370

    Article  CAS  Google Scholar 

  • Rodrigues L, Moldes A, Teixeira J, Oliveira R (2006) Kinetic study of fermentative biosurfactant production by lactobacillus strains. Biochem Eng J 28(2):109–116

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13(3):249–252

    Article  CAS  PubMed  Google Scholar 

  • Saika A, Fukuoka T, Mikome S, Kondo Y, Habe H, Morita T (2019) Screening and isolation of the liamocin-producing yeast Aureobasidium melanogenum using xylose as the sole carbon source. J Biosci Bioeng 129:428. https://doi.org/10.1016/j.jbiosc.2019.10.010

    Article  CAS  PubMed  Google Scholar 

  • Salman JAS, Kadhemy MFH, Jaleel MS, Abdal AK (2014) Effect of PVA, PVA/Biosurfactant on some pathogenic bacteria in glass and plastic plates. Int J Curr Microbiol App Sci 3(10):301–309

    Google Scholar 

  • Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Geomarine Sci 37(3):243–250

    CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Bunpurkar AG, Chopade BA (2010a) Biosurfactants, bioemulsifiers and exopolysaccharides from marine organisms. Biotechnol Adv 28(4):436–450

    Article  CAS  PubMed  Google Scholar 

  • Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010b) Enhanced biosurfactant production by a Bacillus licheniformis mutant. Crit Rev Biotechnol 30(2):127–144

    Article  CAS  PubMed  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22(3):422–426

    Article  CAS  PubMed  Google Scholar 

  • Urbanek AK, Rymowicz W, Mironczuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102(18):7669–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin YC, de Peer YV, Soetaert W (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88(3):501–509

    Article  PubMed  Google Scholar 

  • Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10:181–192

    Article  Google Scholar 

  • Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology 24:232–239

    Article  Google Scholar 

  • Wilcox C, Sebille EV, Hardesty BD (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. PNAS 112(38):11899–11904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalcin HT, Ergin-Tepebasi G, Uyar E (2018) Isolation and molecular characterization of biosurfactant producing yeasts from the soil samples contaminated with petroleum derivatives. J Basic Microbiol 58:782–792

    Article  CAS  PubMed  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pattanathu K. S. M. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, M.L., Rahman, P.K.S.M. (2023). Biosurfactants for Plastic Biodegradation. In: Samuel Jacob, B., Ramani, K., Vinoth Kumar, V. (eds) Applied Biotechnology for Emerging Pollutants Remediation and Energy Conversion. Springer, Singapore. https://doi.org/10.1007/978-981-99-1179-0_3

Download citation

Publish with us

Policies and ethics