Skip to main content

Transition Criteria and Scaling Law of Streamer-Spark Pulsed Discharges

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

  • 738 Accesses

Abstract

Once the electrodes are not isolated by dielectrics, the spark discharge occurs when the discharge connects the electrodes. The transition from a streamer to a spark can be widely seen in the applications of pulsed discharges. In this chapter, the condition for the transition in a pin to plane configuration is investigated. A two-dimensional fluid and a zero-dimensional global are combined to reveal the spark transition at different temperatures. A conservative criterion to determine the condition for the streamer-to-spark transition of the first pulse is proposed. The conditions of spark formation in subsequent pulses in repetitive discharges when the field is lower than the ionization threshold are derived quantitatively taking into consideration the “knocking off” effects of long-life O atoms and negative ions. An analytical solution is formulated to scale the spark discharges to different pressures, energy depositions and discharge durations for hydrodynamics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.J. Bruggeman, F. Iza, R. Brandenburg, Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 26(12), 123002 (2017). https://doi.org/10.1088/1361-6595/aa97af

  2. Y. Ju, W. Sun, Y.J. W. Sun, Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48(3), 21–83 (2015). https://doi.org/10.1016/j.pecs.2014.12.002

  3. M. Ramakers, G. Trenchev, S. Heijkers, W. Wang, A. Bogaerts, Gliding arc plasmatron: providing an alternative method for carbon dioxide conversion. Chemsuschem 10(12), 2642–2652 (2017). https://doi.org/10.1002/cssc.201700589

    Article  Google Scholar 

  4. N.A. Popov, S.M. Starikovskaia, Relaxation of electronic excitation in nitrogen/oxygen and fuel/air mixtures: fast gas heating in plasma-assisted ignition and flame stabilization. Prog. Energy Combust. Sci. 100928 (2022). https://doi.org/10.1016/j.pecs.2021.100928.

  5. M. Nishihara, K. Takashima, J.W. Rich, I.V. Adamovich, Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge. Phys. Fluids 23(6), 66101 (2011). https://doi.org/10.1063/1.3599697

  6. B. Lin, Y. Wu, Y. Zhu, F. Song, D. Bian, Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement. Appl. Energy 235, 1017–1026 (2019). https://doi.org/10.1016/j.apenergy.2018.11.026

  7. N.Y. Babaeva, G.V. Naidis, Simulation of subnanosecond streamers in atmospheric-pressure air: effects of polarity of applied voltage pulse. Phys. Plasmas 23(8) (2016). https://doi.org/10.1063/1.4961925

  8. Y.P. Raizer, Gas Discharge Physics. Springer, New York (1991)

    Google Scholar 

  9. E. Marode, F. Bastien, M. Bakker, A model of the streamer-induced spark formation based on neutral dynamics. J. Appl. Phys. 50(1), 140–146 (1979). https://doi.org/10.1063/1.325697

  10. E. Marode, The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. I. experimental: nature of the streamer track. J. Appl. Phys. 46(5), 2005–2015 (1975). https://doi.org/10.1063/1.321882

  11. R. Morrow, J.J. Lowke, Streamer propagation in air. J. Phys. D. Appl. Phys. 30(4), 614–627 (1997). https://doi.org/10.1088/0022-3727/30/4/017

  12. D.Z. Pai, D.A. Lacoste, C.O. Laux, Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure. J. Appl. Phys. 107(9) (2010). https://doi.org/10.1063/1.3309758

  13. M. Janda, Z. Machala, L. Dvonč, D. Lacoste, C.O. Laux, Self-pulsing discharges in pre-heated air at atmospheric pressure. J. Phys. D. Appl. Phys. 48(3), 35201 (2014). https://doi.org/10.1088/0022-3727/48/3/035201

  14. M. Janda, V. Martišovitš, K. Hensel, L. Dvonč, Z. Machala, Measurement of the electron density in Transient Spark discharge. Plasma Sources Sci. Technol. 23(6), 65016 (2014). https://doi.org/10.1088/0963-0252/23/6/065016

  15. M. Janda, T. Hoder, A. Sarani, R. Brandenburg, Z. Machala, Cross-correlation spectroscopy study of the transient spark discharge in atmospheric pressure air. Plasma Sources Sci. Technol. 26(5), 55010 (2017). https://doi.org/10.1088/1361-6595/aa642a

  16. M. Janda, V. Martišovitš, Z. Machala, Transient spark: a dc-driven repetitively pulsed discharge and its control by electric circuit parameters. Plasma Sources Sci. Technol. 20(3), 35015 (2011). https://doi.org/10.1088/0963-0252/20/3/035015

  17. M. Janda, Z. Machala, A. Niklová, V. Martišovitš, The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sources Sci. Technol. 21(4), 45006 (2012). https://doi.org/10.1088/0963-0252/21/4/045006

  18. M. Janda, V. Martišovitš, A. Buček, K. Hensel, M. Molnár, Z. Machala, Influence of repetition frequency on streamer-to-spark breakdown mechanism in transient spark discharge. J. Phys. D. Appl. Phys. 50(42), 425207 (2017). https://doi.org/10.1088/1361-6463/aa8940

  19. F. Tholin, Numerical simulation of nanosecond repetitively pulsed discharges in air at atmospheric pressure: application to plasma-assisted combustion. Ecole Centrale Paris (2012)

    Google Scholar 

  20. Y. Zhu, S. Shcherbanev, B. Baron, S. Starikovskaia, Nanosecond surface dielectric barrier discharge in atmospheric pressure air: I. measurements and 2D modeling of morphology, propagation and hydrodynamic perturbations. Plasma Sources Sci. Technol. 26(12), 125004 (2017). https://doi.org/10.1088/1361-6595/aa9304

  21. Y. Zhu, S. Starikovskaia, Fast gas heating of nanosecond pulsed surface dielectric barrier discharge: spatial distribution and fractional contribution from kinetics. Plasma Sources Sci. Technol. 27(12), 124007 (2018). https://doi.org/10.1088/1361-6595/aaf40d

  22. G.J.M.M. Hagelaar, L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 14(4), 722 (2005). https://doi.org/10.1088/0963-0252/14/4/011

  23. L.A. Viehland, E.A. Mason, Transport properties of gaseous ions over a wide energy range, IV. At. Data Nucl. Data Tables 60(1), 37–95 (1995). https://doi.org/10.1006/adnd.1995.1004

  24. S. Zheleznyak, Mnatsakanyan, Photoionization of nitrogen-oxygen mixtures by emission from a gas discharge (1982)

    Google Scholar 

  25. A.A. Kulikovsky, Positive streamer in a weak field in air—a moving avalanche-to-streamer transition1.pdf. Phys. Rev. E Stat. Phys. Plasmas, Fluids, Relat. Interdiscip. Top. 57(6), 7066–7074 (1998)

    Google Scholar 

  26. A. Bourdon, V.P. Pasko, N.Y. Liu, S. Célestin, P. Ségur, E. Marode, Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Sources Sci. Technol. 16(3), 656–678 (2007). https://doi.org/10.1088/0963-0252/16/3/026

  27. Y. Zhu et al., Simulation of ionization-wave discharges: a direct comparison between the fluid model and E-FISH measurements. Plasma Sources Sci. Technol. 30(7), 075025 (2021). https://doi.org/10.1088/1361-6595/ac0714

  28. F. Tholin, A. Bourdon, Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure. J. Phys. D. Appl. Phys. 46(36), 365205 (2013). https://doi.org/10.1088/0022-3727/46/36/365205

  29. V.F. Tarasenko, G.V. Naidis, D.V. Beloplotov, I.D. Kostyrya, N.Y. Babaeva, Formation of wide streamers during a subnanosecond discharge in atmospheric-pressure air. Plasma Phys. Reports 44(8), 746–753 (2018). https://doi.org/10.1134/S1063780X18080081

  30. S. Pancheshnyi, B. Eismann, G.J.M. Hagelaar, L.C. Pitchford, Computer code ZDPlasKin. University of Toulouse, LAPLACE (2008)

    Google Scholar 

  31. Y. Zhu, N.D. Lepikhin, I.S. Orel, A. Salmon, A.V. Klochko, S.M. Starikovskaia, Optical actinometry of O-atoms in pulsed nanosecond capillary discharge: peculiarities of kinetics at high specific deposited energy. Plasma Sources Sci. Technol. 27(7), 75020 (2018). https://doi.org/10.1088/1361-6595/aac95f

  32. O. Eichwald et al., Experimental analysis and modelling of positive streamer in air: Towards an estimation of O and N radical production. J. Phys. D. Appl. Phys. 41(23), 234002 (2008). https://doi.org/10.1088/0022-3727/41/23/234002

  33. A. Montello, Z. Yin, D. Burnette, I.V. Adamovich, W.R. Lempert, Picosecond CARS measurements of nitrogen vibrational loading and rotational/translational temperature in non-equilibrium discharges. J. Phys. D. Appl. Phys. 46(46) (2013). https://doi.org/10.1088/0022-3727/46/46/464002

  34. I. Shkurenkov, D. Burnette, W.R. Lempert, I.V. Adamovich, Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air. Plasma Sources Sci. Technol. 23(6) (2014). https://doi.org/10.1088/0963-0252/23/6/065003

  35. D. Burnette, A. Montello, I.V. Adamovich, W.R. Lempert, Nitric oxide kinetics in the afterglow of a diffuse plasma filament. Plasma Sources Sci. Technol. 23(4) (2014). https://doi.org/10.1088/0963-0252/23/4/045007

  36. I. Shkurenkov, I.V. Adamovich, Energy balance in nanosecond pulse discharges in nitrogen and air. Plasma Sources Sci. Technol. 25(1), 15021 (2016). https://doi.org/10.1088/0963-0252/25/1/015021

  37. T.L. Chng, A. Brisset, P. Jeanney, S.M. Starikovskaia, I.V. Adamovich, P. Tardiveau, Electric field evolution in a diffuse ionization wave nanosecond pulse discharge in atmospheric pressure air. Plasma Sources Sci. Technol. 28(9) (2019). https://doi.org/10.1088/1361-6595/ab3cfc

  38. F. Tholin, A. Bourdon, Influence of temperature on the glow regime of a discharge in air at atmospheric pressure between two point electrodes. J. Phys. D. Appl. Phys. 44(38), 385203 (2011). https://doi.org/10.1088/0022-3727/44/38/385203

  39. C.F. Eyring, S.S. Mackeown, R.A. Millikan, Fields currents from points. Phys. Rev. 31(5), 900–909 (1928). https://doi.org/10.1103/PhysRev.31.900

  40. I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1(3), 207–220 (1992). https://doi.org/10.1088/0963-0252/1/3/011

  41. S. Pancheshnyi, M. Nudnova, A. Starikovskii, Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation. Phys. Rev. E 71(1), 16407 (2005)

    Google Scholar 

  42. X. Chen, Y. Zhu, Y. Wu, J. Hao, X. Ma, P. Lu, Numerical investigations of nanosecond surface streamers at elevated pressure. Plasma Sources Sci. Technol. 30(7), 075008 (2021). https://doi.org/10.1088/1361-6595/abef1c

  43. N.Q. Minesi, P.B. Mariotto, G.-D. Stancu, C.O. Laux, Ionization mechanism in a thermal spark discharge, in AIAA Scitech 2021 Forum (2021), pp. 1–19. https://doi.org/10.2514/6.2021-1698

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, Y., Wu, Y., Chen, X. (2023). Transition Criteria and Scaling Law of Streamer-Spark Pulsed Discharges. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_7

Download citation

Publish with us

Policies and ethics