Skip to main content

Pulsed Discharge in Water: Initiation, Propagation and Breakdown

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

  • 740 Accesses

Abstract

Pulsed discharge in water has grown into a popular research field in recent years due to its extensive application prospects in medicine, material, environment, energy and other fields. However, due to the occurrence of multiple physical and chemical reactions during discharge processes, the mechanisms behind the initiation, propagation and breakdown of underwater discharges are not clearly revealed so far. This chapter will describe the pre-breakdown phenomena, i.e., streamer, and breakdown characteristics of underwater discharges in detail. The influencing factors contributing to the different discharge behavior are also presented. Besides, the existed theories of discharge initiation and propagation will be discussed and two models for predicting the breakdown voltages caused by streamer discharges are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Qian, R.P. Joshi, E. Schamiloglu et al., Analysis of polarity effects in the electrical breakdown of liquids. J. Phys. D Appl. Phys. 39(2), 359–369 (2006)

    Article  ADS  Google Scholar 

  2. J. Wen, Y. Li, L. Li et al., Experimental observations and interpretations of bubble-induced discharges under microsecond pulsed voltages in water. J. Phys. D Appl. Phys. 53(42), 425208 (2020)

    Article  ADS  Google Scholar 

  3. H. Fujita, S. Kanazawa, K. Ohtani et al., Spatiotemporal analysis of propagation mechanism of positive primary streamer in water. J. Appl. Phys. 113(11), 113304 (2013)

    Article  ADS  Google Scholar 

  4. S. Kanazawa, Y. Abe, Y. Kihara et al., Time evolution of pulsed streamer discharge in water. IEEE Trans. Plasma Sci. 36(4), 922–923 (2008)

    Article  ADS  Google Scholar 

  5. B.H. Lee, D.S. Kim, J.H. Choi et al., Underwater discharge phenomena in inhomogeneous electric fields caused by impulse voltages. J. Electr. Eng. Technol. 5(2), 329–336 (2010)

    Article  Google Scholar 

  6. J.R. Woodworth, J.M. Lehr, J. Elizondo-Decanini et al., Optical and pressure diagnostics of 4-MV water switches in the Z-20 test facility, IEEE Trans. Plasma Sci. 32(5):1778–1789 (2004)

    Google Scholar 

  7. W. An, K. Baumung, H. Bluhm, Underwater streamer propagation analyzed from detailed measurements of pressure release. J. Appl. Phys. 101(5), 053302 (2007)

    Article  ADS  Google Scholar 

  8. J. Nieto-Salazar, N. Bonifaci, A. Denat et al., Characterization and spectroscopic study of positive streamers in water, in IEEE International Conference on Dielectric Liquids, pp. 91–94 (2005)

    Google Scholar 

  9. J. Wen, Y. Li, Z. Ni et al., Time-resolved analysis of negative pulsed discharges in water: streamer initiation and propagation modes. Plasma Sources Sci. Technol. 30(6), 065021 (2021)

    Article  ADS  Google Scholar 

  10. O. Lesaint, M. Jung, On the relationship between streamer branching and propagation in liquids: influence of pyrene in cyclohexane. J. Phys. D Appl. Phys. 33(11), 1360 (2000)

    Article  ADS  Google Scholar 

  11. R. Coelho, J. Debeau, Properties of the tip-plane configuration. J. Phys. D Appl. Phys. 4(9), 1266 (1971)

    Article  ADS  Google Scholar 

  12. P. Hoffer, Shock waves generated by corona-like discharges in water (Czech Technical University, 2014).

    Google Scholar 

  13. S. Gasanova, Aqueous-phase electrical discharges: generation, investigation and application for organics removal from water (Duisburg-Essen University, 2013)

    Google Scholar 

  14. T.H. Martin, A.H. Guenther, M.J.C. Kristiansen, Martin on pulsed power (Springer, Boston, M A, 1996)

    Book  Google Scholar 

  15. P. Šunka, Pulse electrical discharges in water and their applications. Phys. Plasmas 8(5), 2587–2594 (2001)

    Article  ADS  Google Scholar 

  16. V.A. Panov, L.M. Vasilyak, S.P. Vetchinin et al., Slow ‘thermal’ and fast ‘streamer-leader’ breakdown modes in conductive water. J. Phys. D Appl. Phys. 51, 354003 (2018)

    Article  Google Scholar 

  17. H.M. Jones, E.E. Kunhardt, The influence of pressure and conductivity on the pulsed breakdown of water. IEEE Trans. Dielectr. Electr. Insul. 1(6), 1016–1025 (1994)

    Article  Google Scholar 

  18. D. Linhjell, L.E. Lundgaard, M. Unge, Pressure dependent propagation of positive streamers in a long point-plane gap in transformer oil, in IEEE International Conference on Dielectric Liquids, pp. 1–3 (2019)

    Google Scholar 

  19. Y. Hayashi, N. Takada, H. Kanda et al., Effect of fine bubbles on electric discharge in water. Plasma Sources Sci. Technol. 24, 055023 (2015)

    Article  ADS  Google Scholar 

  20. D.V. Tereshonok, N.Y. Babaeva, G.V. Naidis et al., Pre-breakdown phenomena and discharges in a gas-liquid system. Plasma Sources Sci. Technol. 27, 045005 (2018)

    Article  ADS  Google Scholar 

  21. M. Šimek, P. Hoffer, J. Tungli et al., Investigation of the initial phases of nanosecond discharges in liquid water. Plasma Sources Sci. Technol. 29, 064001 (2020)

    Article  ADS  Google Scholar 

  22. R.S. Sigmond, T. Sigmond, L. Rolfseng et al., The aiming of the bolt: how a flashover finds the weak spot. IEEE Trans. Plasma Sci. 32(5), 1812–1818 (2004)

    Article  ADS  Google Scholar 

  23. O. Lesaint, Prebreakdown phenomena in liquids: propagation ‘modes’ and basic physical properties. J. Phys. D Appl. Phys. 49, 144001 (2016)

    Article  ADS  Google Scholar 

  24. V.A. Panov, L.M. Vasilyak, S.P. Vetchinin et al., Pulsed electrical discharge in conductive solution. J. Phys. D Appl. Phys. 49(38), 385202 (2016)

    Article  Google Scholar 

  25. X. Li, Y. Liu, G. Zhou, et al., Subsonic streamers in water: Initiation, propagation and morphology. J. Phys. D Appl. Phys. 50(25), 255301 (2017)

    Google Scholar 

  26. G. Massala, O. Lesaint, Positive streamer propagation in large oil gaps: electrical properties of streamers. IEEE Trans. Dielectr. Electr. Insul. 5(3), 371–381 (2002)

    Article  Google Scholar 

  27. N.V. Dung, H.K. Hoidalen, D. Linhjell et al., Influence of impurities and additives on positive streamers in paraffinic model oil. IEEE Trans. Dielectr. Electr. Insul. 19(5), 1593–1603 (2012)

    Article  Google Scholar 

  28. P. Ceccato, Filamentary plasma discharge inside water: initiation and propagation of a plasma in a dense medium (Ecole Polytechnique X, 2009)

    Google Scholar 

  29. J.R. Woodworth, J. Lehr, P.A. Miller et al., Optical diagnostics of 4 MV water switches in the Z-20 test facility. IEEE Int. Pulsed Power Conf. 1, 167–170 (2003)

    Google Scholar 

  30. V. Panov, L.M. Vasilyak, S. Vetchinin et al., Pulsed electrical breakdown of conductive water with air bubbles. Plasma Sources Sci. Technol. 28(8), 085019 (2019)

    Article  ADS  Google Scholar 

  31. C. Rond, N. Fagnon, A. Vega et al., Statistical analysis of a micro-pulsed electrical discharge in water. J. Phys. D Appl. Phys. 53(33), 335204 (2020)

    Article  Google Scholar 

  32. I. Simonović, N.A. Garland, D. Bošnjaković et al., Electron transport and negative streamers in liquid xenon. Plasma Sources Sci. Technol. 28(1), 015006 (2019)

    Article  ADS  Google Scholar 

  33. M. Haidara, A. Denat, Electron multiplication in liquid cyclohexane and propane. IEEE Trans. Electr. Insul. 26(4), 592–597 (1991)

    Article  Google Scholar 

  34. D.V. Tereshonok, Cavitation in liquid dielectric under nanosecond high-voltage impulse. J. Phys. D Appl. Phys. 50(1), 015603 (2016)

    Article  ADS  Google Scholar 

  35. M. Shneider, M. Pekker, Liquid dielectrics in an inhomogeneous pulsed electric field. IOP Publishing (2016)

    Google Scholar 

  36. G.B. Briere, Electrical conduction in purified polar liquids. Br. J. Appl. Phys. 15(4), 413 (1964)

    Article  ADS  Google Scholar 

  37. J. Sivoš, N. Škoro, D. Marić et al., Breakdown and dc discharge in low-pressure water vapour. J. Phys. D Appl. Phys. 48(42), 424011 (2015)

    Article  ADS  Google Scholar 

  38. C. Zener, A theory of the electrical breakdown of solid dielectrics, in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 145, no. 855, pp. 523–529 (1934)

    Google Scholar 

  39. B. Halpern, R. Gomer, Field emission in liquids. J. Chem. Phys. 51(3), 1031–1047 (1969)

    Article  ADS  Google Scholar 

  40. F. Caupin, E. Herbert, Cavitation in water: a review. C R Phys. 7(9–10), 1000–1017 (2006)

    Article  ADS  Google Scholar 

  41. M.N. Shneider, M. Pekker, Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields. J. Appl. Phys. 117(22), 224902 (2015)

    Article  ADS  Google Scholar 

  42. K. Davitt, A. Arvengas, F. Caupin, Water at the cavitation limit: density of the metastable liquid and size of the critical bubble. EPL 90(1), 16002 (2010)

    Article  ADS  Google Scholar 

  43. E. Herbert, S. Balibar, F. Caupin, Cavitation pressure in water. Phys. Rev. E 74(4), 041603 (2006)

    Article  ADS  Google Scholar 

  44. Y. Li, L. Li, J. Wen et al., Towards an improved understanding of nanosecond-pulse discharge initiation in water: from cavitation to electron multiplication. Plasma Sources Sci. Technol. 29(7), 075005 (2020)

    Article  ADS  Google Scholar 

  45. J.F. Haas, B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  ADS  Google Scholar 

  46. T. Kai, A. Yokoya, M. Ukai et al., Thermal equilibrium and prehydration processes of electrons injected into liquid water calculated by dynamic Monte Carlo method. Radiat. Phys. Chem. 115, 1–5 (2015)

    Article  ADS  Google Scholar 

  47. X. Li, Y. Liu, G. Zhou et al., Polarity effect variation on electrical breakdown of water under sub-millisecond pulses. Appl. Phys. Lett. 111(16), 164101 (2017)

    Article  ADS  Google Scholar 

  48. J.C. Martin, Nanosecond pulse techniques. Proc. IEEE 80(6), 934–945 (1992)

    Article  Google Scholar 

  49. W.A. Stygar, T.C. Wagoner, H.C. Ives et al., Water-dielectric-breakdown relation for the design of large-area multimegavolt pulsed-power systems. Phys. Rev. Spec. Top. Accel. Beams 9(7), 070401 (2006)

    Article  ADS  Google Scholar 

  50. J.S. Mirza, C.W. Smith, J.H. Calderwood, Bubbles, pressure and pre-breakdown in insulating liquid, in Proceedings of the 4th Internatioal Conference on Conduction and Breakdown in Dielectric Liquids, vol. 193 (1972)

    Google Scholar 

  51. A.R. Miller, High energy density, low impedance capacitors using pressured water as a dielectric, in Fifth Symposium on Engineering Problems of Fusion Research, pp. 471–474 (1973)

    Google Scholar 

  52. X. Li, Research on process and mechanism of underwater microsecond pulsed discharges under nonuniform electric fields. Huazhong University of Science and Technology (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Li, X. (2023). Pulsed Discharge in Water: Initiation, Propagation and Breakdown. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_4

Download citation

Publish with us

Policies and ethics