Skip to main content

Optical Spectroscopy for the Investigation of Transient Plasmas

  • Chapter
  • First Online:
Pulsed Discharge Plasmas

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

  • 706 Accesses

Abstract

This chapter is dedicated to the presentation of basic concepts of plasma diagnostics via spectroscopy techniques, including optical emission spectroscopy and absorption spectroscopy. The measurements of temperature and electron density are illustrated via several examples of transient atmospheric plasmas generated by electrical and optical discharges, for which the validity conditions and the measurements limitations are discussed. Finally, the influence of self-absorption on plasma emission is discussed, and the appropriate modeling using the radiation transfer equation is introduced. This chapter is addressed to beginners in optical spectroscopy to help them discovering this very powerful technique. Readers wishing to use this technique to diagnose their plasmas are advised to consult more specialized books.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, NY, 1964)

    Google Scholar 

  2. G. Herzberg, Molecular Spectra and Molecular Structure, ISBN 0-89464-268-5, Krieger Publishing Company, Malabar, Florida, Second Edition 1950 (Reprint Edition 1989 w/correction)

    Google Scholar 

  3. W.L. Wiese, Ch. 6. Line broadening, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic Press, New York, 1965)

    Google Scholar 

  4. H.W.Y. Drawin, Validity conditions for local thermodynamic equilibrium. Z. Angew. Phys. 228, 99–119 (1969)

    Google Scholar 

  5. R.W.P. McWhirter, Ch. 5. Spectral intensities, in Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic Press, New York, 1965), p. 206

    Google Scholar 

  6. S.S. Ciobanu, D. Hong, J.M. Bauchire, F. Gentils, Experimental study of a low-voltage circuit breaker, by analysis of complex spectra, including the self-reversed profiles of copper resonance lines. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 12(1–2), 91–108 (2008). https://doi.org/10.1615/HighTempMatProc.v12.i1-2.80

    Article  Google Scholar 

  7. D. Hong, G. Sandolache, J.M. Bauchire, F. Gentils, C. Fleurier, A new optical technique for investigations of low-voltage circuit breakers. IEEE Trans. Plasma Sci. 33(2), 976–981 (2005)

    Article  ADS  Google Scholar 

  8. R.L. Kurucz, B. Bell, Atomic line data, Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, Cambridge, MA, 1995). https://lweb.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html

  9. C. Zaepffel, D. Hong, J.M. Bauchire, Experimental study of an electric discharge used in reactive media ignition. J. Phys. D Appl. Phys. 40, 1052–1058 (2007)

    Article  ADS  Google Scholar 

  10. A. Bielski, A critical survey of atomic transition probabilities for Cu I. J. Quant. Spectrosc. Radiat. Transfer 15(6), 463–472 (1975)

    Article  ADS  Google Scholar 

  11. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic spectra database (ver. 5.9) [Online]. https://physics.nist.gov/asd [2022, March 11]. National Institute of Standards and Technology, Gaithersburg, MD (2021)

  12. I.L. Babich, V.F. Boretskij, A.N. Veklich, R.V. Semenyshyn, Spectroscopic data and Stark broadening of Cu I and Ag I spectral lines: selection and analysis. Adv. Space Res. 54, 1254–1263 (2014)

    Article  ADS  Google Scholar 

  13. J.A. Aguilera, C. Aragón, Multi-element Saha-Boltzmann and Boltzmann plots in laser-induced plasmas. Spectrochimica Acta Part B 62, 378–385 (2007)

    Article  ADS  Google Scholar 

  14. J. Hermann, D. Grojo, E. Axente, C. Gerhard, M. Burger, V. Craciun, Ideal radiation source for plasma spectroscopy generated by laser ablation. Phys. Rev. E 96(053210), 1–6 (2017)

    Google Scholar 

  15. C. Fleurier, Broadening and shift of CuI and CuII lines in plasma. Spectral Line Shapes 4, 67–68 (1987)

    ADS  Google Scholar 

  16. N. Konjevic, W.L. Wiese, Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (A critical review of selected data for the period 1983 through 1988). J. Phys. Chem. Ref. Data 19(6) (1990)

    Google Scholar 

  17. N. Konjevic, A. Lesage, J.R. Fuhr, W.L. Wiese, Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms (A critical review of selected data for the period 1989 through 2000). J. Phys. Chem. Ref. Data 31(3) (2002)

    Google Scholar 

  18. M. Burger, J. Hermann, Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds. Spectrochim. Acta Part B 122, 118–126 (2016)

    Article  ADS  Google Scholar 

  19. J.T. Davies, J.M. Vaughan, A new tabulation of the Voigt profile. Astrophys. J. 137, 1302–1305 (1963)

    Article  ADS  MATH  Google Scholar 

  20. D. Hong, Diagnostic de plasmas denses - Mise au point des instruments de mesure – Application à la mesure des profils de raies de Soufre et de Fluor dans un plasma de Z-pinch – Application à l’étude d’interaction faisceau d’ions lourds - plasma, PhD dissertation (University of Orleans, France, 1991), p. 162

    Google Scholar 

  21. M.A. Gigosos, M.A. Gonzalez, V. Cardenoso, Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochimica Acta Part B 58, 1489–1504 (2003)

    Article  ADS  Google Scholar 

  22. D. Hong, G. Sandolache, K. Lan, J.M. Bauchire, E. Le Menn, C. Fleurier, A radiation source developed for broad band optical absorption spectroscopy measurements. Plasma Sour. Sci. Technol. 12, 1–7 (2003)

    Article  ADS  Google Scholar 

  23. A. De Giacomo, J. Hermann, Laser-induced plasma emission: from atomic to molecular spectra. J. Phys. D Appl. Phys. 50(183002), 1–17 (2017)

    Google Scholar 

  24. D. Hong, H. Rabat, E. Le Menn, C. Zaepffel, J.M. Bauchire, Compact Z-pinch radiation source dedicated to broadband absorption measurements. Matter Radiat. Extremes 1, 179–186 (2016). https://doi.org/10.1016/j.mre.2016.05.003

    Article  Google Scholar 

  25. J. Hermann, C. Boulmer-Leborgne, D. Hong, Diagnostics of the early phasis of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption. J. Appl. Phys. 83, 691–696 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, D., Rabat, H., Ciobanu, S.S., Bauchire, J.M., Hermann, J. (2023). Optical Spectroscopy for the Investigation of Transient Plasmas. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_12

Download citation

Publish with us

Policies and ethics