Skip to main content

Theory Foundation of SAGIN Security

  • Chapter
  • First Online:
Space-Air-Ground Integrated Network Security

Abstract

This chapter provides theory foundation of SAGIN security, including the mathematical foundation, cryptography foundation and communication foundation. In Sect. 2.1, congruence, groups, rings and fields, elliptic curves, one-way functions, bilinear map and bilinear Diffie-Hellman assumption are introduced. In Sect. 2.2, we discuss some classical concepts of cryptography, i.e., symmetric encryption, asymmetric encryption, hash function, digital signature, security protocol and provable security. Finally, basic communication background including digital modulation, multiple access techniques and MIMO are discussed in Sect. 2.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Tse, V. Pramod, Fundamentals of Wireless Communication (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  2. P.W. Wolniansky, G.J. Foschini, G.D. Golden, R.A. Valenzuela, V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel, in Conference Proceedings of the International Symposium on Signals, Systems and Electronics (1998), pp. 295–300

    Google Scholar 

  3. W. Keusgen, On limits of wireless communications when using multiple dual-polarized antennas, in 10th International Conference on Telecommunications, ICT 2003, vol. 1 (2003), pp. 204–210

    Google Scholar 

  4. E. Telatar, Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 10(6), 585–595 (1999)

    Article  MathSciNet  Google Scholar 

  5. H. Viswanathan, S. Venkatesan, H. Huang, Downlink capacity evaluation of cellular networks with known-interference cancellation. IEEE J. Sel. Areas Commun. 21(5), 802–811 (2003)

    Article  Google Scholar 

  6. G. Caire, S. Shamai, On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inf. Theory 49(7), 1691–1706 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Yoo, A. Goldsmith, On the optimality of multi-antenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 24, 528–541 (2006)

    Article  Google Scholar 

  8. Q.H. Spencer, A.L. Swindlehurst, M. Haardt, Zero-forcing method for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. Signal Process. 52(2), 461–471 (2004). https://doi.org/10.1109/TSP.2003.821107

    Article  MathSciNet  MATH  Google Scholar 

  9. C.B. Peel, B.M. Hochwald, A.L. Swindlehurst, A vector-perturbation technique for near-capacity multiantenna multiuser communications - part I: channel inversion and regularization. IEEE Trans. Commun. 53(1), 195–202 (2005). https://doi.org/10.1109/TCOMM.2004.840638

    Article  Google Scholar 

  10. M. Joham, K. Kusume, M.H. Gzara, W. Utschick, Transmit wiener filter for the downlink of TDD DS-CDMA systems, in IEEE 7th Symposium on Spread-Spectrum Techniques and Applications (ISSSTA), Prague, Czech Republic, 2–5 Sept 2002 (2002), pp. 9–13

    Google Scholar 

  11. H. Lee, I. Sohn, D. Kim, K.B. Lee, Generalized MMSE beamforming for downlink MIMO systems, in Proceedings of IEEE International Conference on Communications (ICC 2011), Kyoto, 5–9 June 2011 (2011), pp. 1–6

    Google Scholar 

  12. M. Costa, Writing on dirty paper (Corresp.). IEEE Trans. Inf. Theory 29(3), 439–441 (1983). https://doi.org/10.1109/TIT.1983.1056659

  13. M. Tomlinson, New automatic equaliser employing modulo arithmetic. Electron. Lett. 7(5–6), 138–139 (1971)

    Article  Google Scholar 

  14. H. Harashima, H. Miyakawa, Matched-transmission technique for channels with intersymbol interference. IEEE Trans. Commun. 20(1), 774–780 (1972)

    Article  Google Scholar 

  15. D.A. Schmidt, M. Joham, W. Utschick, Minimum mean square error vector precoding, in 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (2005), pp. 107–111. https://doi.org/10.1109/PIMRC.2005.1651408

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Bai, L., Jiang, C., Zhang, W. (2023). Theory Foundation of SAGIN Security. In: Space-Air-Ground Integrated Network Security. Springer, Singapore. https://doi.org/10.1007/978-981-99-1125-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1125-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1124-0

  • Online ISBN: 978-981-99-1125-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics