Skip to main content

Modification of QuinoxP*-Type Bisphosphine Ligands for High-Performance Asymmetric Boryl Substitution of Racemic Allyl Electrophiles

  • Chapter
  • First Online:
Copper(I)-Catalyzed Stereoselective Borylation Reactions

Part of the book series: Springer Theses ((Springer Theses))

  • 188 Accesses

Abstract

Optically active organoboron compounds are important building blocks in organic synthesis, especially α-chiral allylic boronates because various methods for enantiospecific derivatization of the boryl group have been developed and are now available. Here, I developed the new chiral bisphosphine ligands based on a non-covalent interaction strategy and improved the reactivity and enantioselectivity of copper(I)-catalyzed enantioselective borylation reactions, which provided cyclic and linear internal optically active allylic boronates from racemic allylic electrophiles. The product, allylic boronates, could be transformed into optically active homoallylic alcohols with high diastereoselectivity. Furthermore, the effect of non-covalent interaction in the ligands on reactivity and the origin of enantioselectivity are analyzed and discussed using state-of-the-art DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall DG (ed) (2011) Boronic acids: preparation, applications in organic synthesis and medicine, vols 1–2. Wiley-VCH, Weinheim

    Google Scholar 

  2. Diner C, Szabó KJ (2017) Recent advances in the preparation and application of allylboron species in organic synthesis. J Am Chem Soc 139:2–14

    Article  CAS  PubMed  Google Scholar 

  3. Hoffmann RW (1982) diastereogenic addition of crotylmetal compounds to aldehydes. Angew Chem Int Ed 21: 555–566

    Google Scholar 

  4. Kennedy JWJ, Hall DG (2003) Recent advances in the activation of boron and silicon reagents for stereocontrolled allylation reactions. Angew Chem Int Ed 42:4732–4739

    Google Scholar 

  5. Marek I, Sklute G (2007) Creation of quaternary stereocenters in carbonyl allylation reactions. Chem Commun 1683–1691

    Google Scholar 

  6. Hall DG (2008) New preparative methods for allylic boronates and their application in stereoselective catalytic allylborations. Pure Appl Chem 80:913–927

    Article  CAS  Google Scholar 

  7. Yus M, González-Gómez JC, Foubelo F (2013) Diastereoselective allylation of carbonyl compounds and imines: application to the synthesis of natural products. Chem Rev 113:5595–5698

    Article  CAS  PubMed  Google Scholar 

  8. Huo H-X, Duvall JR, Huang M-Y, Hong R (2014) Catalytic asymmetric allylation of carbonyl compounds and imines with allylic boronates. Org Chem Front 1:303–320

    Article  CAS  Google Scholar 

  9. Scott HK, Aggarwal VK (2011) Highly enantioselective synthesis of tertiary boronic esters and their stereospecific conversion to other functional groups and quaternary stereocentres. Chem Eur J 17:13124–13132

    Google Scholar 

  10. Leonori D, Aggarwal VK (2014) Lithiation-borylation methodology and its application in synthesis. Acc Chem Res 47:3174–3183

    Article  CAS  PubMed  Google Scholar 

  11. Leonori D, Aggarwal VK (2015) Stereospecific couplings of secondary and tertiary boronic esters. Angew Chem Int Ed 54:1082–1096

    Google Scholar 

  12. Mlynarski SN, Karns AS, Morken JP (2012) Direct stereospecific amination of alkyl and aryl pinacol boronates. J Am Chem Soc 134:16449–16451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alam R, Vollgraff T, Eriksson L, Szabó KJ (2015) Synthesis of adjacent quaternary stereocenters by catalytic asymmetric allylboration. J Am Chem Soc 137:11262–11265

    Article  CAS  PubMed  Google Scholar 

  14. Alam R, Diner C, Jonker S, Eriksson L, Szabó KJ (2016) Catalytic asymmetric allylboration of indoles and dihydroisoquinolines with allylboronic acids: stereodivergent synthesis of up to three contiguous stereocenters. Angew Chem Int Ed 55:14417–14421

    Google Scholar 

  15. García-Ruiz C, Chen JL-Y, Sandford C, Feeney K, Lorenzo P, Berionni G, Mayr H, Aggarwal VK (2017) Stereospecific allylic functionalization: the reactions of allylboronate complexes with electrophiles. J Am Chem Soc 139:15324–15327

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jonker SJT, Diner C, Schulz G, Iwamoto H, Eriksson L, Szabó KJ (2018) Catalytic asymmetric propargyl- and allylboration of hydrazonoesters: a metal-free approach to sterically encumbered chiral α-amino acid derivatives. Chem Commun 54:12852–12855

    Article  CAS  Google Scholar 

  17. Kiyokawa K, Hata S, Kainuma S, Minakata S (2019) Electrophilic cyanation of allylic boranes: synthesis of β, γ-unsaturated nitriles containing allylic quaternary carbon centers. Chem Commun 55:458–461

    Article  CAS  Google Scholar 

  18. Hari DP, Madhavachary R, Fasano V, Haire J, Aggarwal VK (2021) Highly diastereoselective strain-increase allylborations: rapid access to alkylidenecyclopropanes and alkylidenecyclobutanes. J Am Chem Soc 143:7462–7470

    Article  CAS  PubMed  Google Scholar 

  19. Börner A (ed) (2008) Phosphorus ligands in asymmetric catalysis: synthesis and application, vols 1–3. Wiley-VCH, Weinheim

    Google Scholar 

  20. Zhou Q-L (ed) (2011) Privileged chiral ligands and catalysts. Wiley-VCH, Weinheim

    Google Scholar 

  21. Phosphorus(III) Ligands in Homogeneous Catalysis Design and Synthesis; Kamer, P. C. J., van Leeuwen, P. W. N. M., Eds.; Wiley-VCH: Weinheim, 2012.

    Google Scholar 

  22. Stradiotto M, Lundgren RJ (eds) (2016) Ligand design in metal chemistry: reactivity and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  23. Van Leeuwen PWNM, Kamer PCJ, Reek JNH, Dierkes P (2000) Ligand bite angle effects in metal-catalyzed C-C bond formation. Chem Rev 100:2741–2769

    Article  PubMed  Google Scholar 

  24. O’Neill MJ, Riesebeck T, Cornella J (2018) Thorpe–ingold effect in branch-selective alkylation of unactivated aryl fluorides. Angew Chem Int Ed 57:9103–9107

    Google Scholar 

  25. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel lecture). Angew Chem Int Ed 41:2008–2022

    Google Scholar 

  26. Berthod M, Mignani G, Woodward G, Lemaire M (2005) Modified BINAP: the how and the why. Chem Rev 105:1801–1836

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu H, Nagasaki I, Matsumura K, Sayo N, Saito T (2007) Developments in asymmetric hydrogenation from an industrial perspective. Acc Chem Res 40:1385–1393

    Article  CAS  PubMed  Google Scholar 

  28. Burk MJ (1991) C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions. J Am Chem Soc 113:8518–8519

    Article  CAS  Google Scholar 

  29. Burk MJ, Feaster JE, Nugent WA, Harlow RL (1993) Preparation and use of C2-symmetric bis(phospholanes): production of α-amino acid derivatives via highly enantioselective hydrogenation reactions. J Am Chem Soc 115:10125–10138

    Article  CAS  Google Scholar 

  30. Burk MJ (2000) Modular phospholane ligands in asymmetric catalysis. Acc Chem Res 33:363–372

    Article  CAS  PubMed  Google Scholar 

  31. Wada R, Shibuguchi T, Makino S, Oisaki K, Kanai M, Shibasaki M (2006) Catalytic enantioselective allylation of ketoimines. J Am Chem Soc 128:7687–7691

    Article  CAS  PubMed  Google Scholar 

  32. Lu G, Liu RY, Yang Y, Fang C, Lambrecht DS, Buchwald SL, Liu P (2017) Ligand-substrate dispersion facilitates the copper-catalyzed hydroamination of unactivated olefins. J Am Chem Soc 139:16548–16555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Imamoto T (2016) Searching for practically useful P-chirogenic phosphine ligands. Chem Rec 16:2659–2673

    Article  Google Scholar 

  34. Dutartre M, Bayardon J, Jugé S (2016) Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem Soc Rev 45:5771–5794

    Article  CAS  PubMed  Google Scholar 

  35. Imamoto T, Sugita K, Yoshida K (2005) An air-stable P-chiral phosphine ligand for highly enantioselective transition-metal-catalyzed reactions. J Am Chem Soc 127:11934–11935

    Article  CAS  PubMed  Google Scholar 

  36. Iwamoto H, Imamoto T, Ito H (2018) Computational design of high-performance ligand for enantioselective markovnikov hydroboration of aliphatic terminal alkenes. Nat Commun 9:2290

    Article  PubMed  PubMed Central  Google Scholar 

  37. In 2019, I and co-workers in the Ito group achieved a copper(I)-catalyzed enantioconvergent boryl substitution of racemic benzyl chloride using a modified QuinoxP*-type ligand. See, Ref. [38]

    Google Scholar 

  38. Iwamoto H, Endo K, Ozawa Y, Watanabe Y, Kubota K, Imamoto T, Ito H (2019) Copper(I)-catalyzed enantioconvergent borylation of racemic benzyl chlorides enabled by quadrant-by-quadrant structure modification of chiral bisphosphine ligands. Angew Chem Int Ed 58:11112–11117

    Google Scholar 

  39. Hu A, Ngo HL, Lin W (2004) Remarkable 4,4′-substituent effects on binap: highly enantioselective Ru catalysts for asymmetric hydrogenation of β-aryl ketoesters and their immobilization in room-temperature ionic liquids. Angew Chem Int Ed 43:2501–2504

    Google Scholar 

  40. Hu A, Ngo HL, Lin W (2004) 4,4′-Disubstituted BINAPs for highly enantioselective Ru-catalyzed asymmetric hydrogenation of ketones. Org Lett 6:2937–2940

    Article  CAS  PubMed  Google Scholar 

  41. Ogasawara M, Ngo HL, Sakamoto T, Takahashi T, Lin W (2005) Applications of 4,4′-(Me3Si)2-BINAP in transition-metal-catalyzed asymmetric carbon−carbon bond-forming reactions. Org Lett 7:2881–2884

    Article  CAS  PubMed  Google Scholar 

  42. Storch G, Trapp O (2015) Temperature-controlled bidirectional enantioselectivity in a dynamic catalyst for asymmetric hydrogenation. Angew Chem Int Ed 54:3580–3586

    Google Scholar 

  43. Ito H, Kunii S, Sawamura M (2010) Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nat Chem 2:972–976

    Article  CAS  PubMed  Google Scholar 

  44. Nafe J, Herbert S, Auras F, Karaghiosoff K, Bein T, Knochel P (2015) Functionalization of quinoxalines by using TMP bases: preparation of tetracyclic heterocycles with high photoluminescene quantum yields. Chem Eur J 21:1102–1107

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Z, Tamura K, Mayama D, Sugiya M, Imamoto T (2012) Three-hindered quadrant phosphine ligands with an aromatic ring backbone for the rhodium-catalyzed asymmetric hydrogenation of functionalized alkenes. J Org Chem 77:4184–4188

    Article  CAS  PubMed  Google Scholar 

  46. Mohr JT, Moore JT, Stoltz BM (2016) Enantioconvergent catalysis. Beilstein J Org Chem 12:2038–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Delvos LB, Oestreich M (2015) Temperature-dependent direct enantioconvergent silylation of a racemic cyclic allylic phosphate by copper(I)-catalyzed allylic substitution. Synthesis 47:924–933

    Article  CAS  Google Scholar 

  48. Bohan PT, Toste FD (2017) Well-defined chiral gold(III) complex catalyzed direct enantioconvergent kinetic resolution of 1,5-enynes. J Am Chem Soc 139:11016–11019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ge Y, Cui XY, Tan SM, Jiang H, Ren J, Lee N, Lee R, Tan CH (2019) Guanidine–copper complex catalyzed allylic borylation for the enantioconvergent synthesis of tertiary cyclic allylboronates. Angew Chem Int Ed 58:2382–2386

    Google Scholar 

  50. Ito H, Kawakami C, Sawamura M (2005) Copper-catalyzed γ-selective and stereospecific substitution reaction of allylic carbonates with diboron: efficient route to chiral allylboron compounds. J Am Chem Soc 127:16034–16035

    Article  CAS  PubMed  Google Scholar 

  51. The perfect E/Z-selectivity of this borylative kinetic resolution stands in sharp contrast to that of the copper(I)-catalyzed enantioselective alkylation of linear allyl electrophiles; for details, see: Langlois JB, Alexakis A (2011) Identification of a valuable kinetic process in copper-catalyzed asymmetric allylic alkylation. Angew Chem Int Ed 50:1877–1881

    Google Scholar 

  52. Imamoto T, Tamura K, Zhang Z, Horiuchi Y, Sugiya M, Yoshida K, Yanagisawa A, Gridnev ID (2012) Rigid P-chiral phosphine ligands with tert-butylmethylphosphino groups for rhodium-catalyzed asymmetric hydrogenation of functionalized alkenes. J Am Chem Soc 134:1754–1769

    Article  CAS  PubMed  Google Scholar 

  53. Lessard S, Peng F, Hall DG (2009) α-hydroxyalkyl heterocycles via chiral allylic boronates: Pd-catalyzed borylation leading to a formal enantioselective isomerization of allylic ether and amine. J Am Chem Soc 131:9612–9613

    Article  CAS  PubMed  Google Scholar 

  54. The slight enantioselectivity erosion compared to the results of (R)-3c should be caused by a small amount of remaining substrate or catalyst.

    Google Scholar 

  55. Goering HL, Singleton VD (1976) On the stereochemistry of conversion of allylic esters to olefins with lithium dialkylcuprates. J Am Chem Soc 98:7854–7855

    Article  CAS  Google Scholar 

  56. Yamanaka M, Kato S, Nakamura E (2004) Mechanism and regioselectivity of reductive elimination of π-allylcopper (III) intermediates. J Am Chem Soc 126:6287–6293

    Article  CAS  PubMed  Google Scholar 

  57. Langlois JB, Emery D, Mareda J, Alexakis A (2012) Mechanistic identification and improvement of a direct enantioconvergent transformation in copper-catalyzed asymmetric allylic alkylation. Chem Sci 3:1062–1069

    Article  CAS  Google Scholar 

  58. Rideau E, You H, Sidera M, Claridge TDW, Fletcher SP (2017) Mechanistic studies on a Cu-catalyzed asymmetric allylic alkylation with cyclic racemic starting materials. J Am Chem Soc 139:5614–5624

    Article  CAS  PubMed  Google Scholar 

  59. Park JK, Lackey HH, Ondrusek BA, McQuade DT (2011) Stereoconvergent synthesis of chiral allylboronates from an E/Z mixture of allylic aryl ethers using a 6-NHC-Cu(I) catalyst. J Am Chem Soc 133:2410–2413

    Article  CAS  PubMed  Google Scholar 

  60. Guzman-Martinez A, Hoveyda AH (2010) Enantioselective synthesis of allylboronates bearing a tertiary or quaternary B-substituted stereogenic carbon by NHC-Cu-catalyzed substitution reactions. J Am Chem Soc 132:10634–10637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamamoto E, Takenouchi Y, Ozaki T, Miya T, Ito H (2014) Copper(I)-catalyzed enantioselective synthesis of α-chiral linear or carbocyclic (E)-(γ-alkoxyallyl)boronates. J Am Chem Soc 136:16515–16521

    Article  CAS  PubMed  Google Scholar 

  62. Borner C, Anders L, Brandhorst K, Kleeberg C (2017) Elusive phosphine copper(I) boryl complexes: synthesis, structures, and reactivity. Organometallics 36:4687–4690

    Article  CAS  Google Scholar 

  63. Tobisch S (2017) Copper-catalysed aminoboration of vinylarenes with hydroxylamine esters-A computational mechanistic study. Chem Eur J 23:17800–17809

    Article  CAS  PubMed  Google Scholar 

  64. The DFT calculation of the borylcupration steps of the borylative kinetic resolution was also in good agreement with the experimental results. For details, see chapter 2.5.

    Google Scholar 

  65. Durand DJ, Fey N (2019) Computational ligand descriptors for catalyst design. Chem Rev 119:6561–6594

    Article  CAS  PubMed  Google Scholar 

  66. This classification produced results similar to the clustering based on the atom coordinates of the catalyst structures in the TSs by clustering. Detailed results and discussions regarding the analysis are summarized in chapter 2.5.

    Google Scholar 

  67. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst Sect C 71:3–8

    Article  Google Scholar 

  68. Hatano M, Kamiya S, Ishihara K (2012) In situ generated “Lanthanum(III) Nitrate Alkoxide” as a highly active and nearly neutral transesterification catalyst. Chem Commun 48:9465–9467

    Article  CAS  Google Scholar 

  69. Takahata H, Suto Y, Kato E, Yoshimura Y, Ouchi H (2007) A new preparation of homochiral n-protected 5-hydroxy-3-piperidenes, promising chiral building blocks, by palladium-catalyzed deracemization of their alkyl carbonates. Adv Synth Catal 349:685–693

    Article  CAS  Google Scholar 

  70. Trost BM, Richardson J, Yong K (2006) Palladium-catalyzed chemo- and enantioselective oxidation of allylic esters and carbonates. J Am Chem Soc 128:2540–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kinderman SS, Doodeman R, van Beijma JW, Russcher JC, Tjen KCMF, Kooistra TM, Mohaselzadeh H, van Maarseveen JH, Hiemstra H, Schoemaker HE, Rutjes FPJT (2002) Ring-closing metathesis of allylic O, O- and N, O-acetals. Adv Synth Catal 344:736–748

    Article  CAS  Google Scholar 

  72. Villar L, Orlov NV, Kondratyev NS, Uria U, Vicario JL, Malkov AV (2018) Kinetic resolution of secondary allyl boronates and their application in the synthesis of homoallylic amines. Chem Eur J 24:16262–16265

    Article  CAS  PubMed  Google Scholar 

  73. Sasaki Y, Zhong C, Sawamura M, Ito H (2010) Copper(I)-catalyzed asymmetric monoborylation of 1,3-dienes: synthesis of enantioenriched cyclic homoallyl- and allylboronates. J Am Chem Soc 132:1226–1227

    Article  CAS  PubMed  Google Scholar 

  74. Ye J, Zhao J, Xu J, Mao Y, Zhang YJ (2013) Pd-catalyzed stereospecific allyl-aryl coupling of allylic alcohols with arylboronic acids. Chem Commun 49:9761–9763

    Article  CAS  Google Scholar 

  75. Chen F, Zhang Y, Yu L, Zhu S (2017) Enantioselective NiH/Pmrox-catalyzed 1,2-reduction of α,β-unsaturated ketones. Angew Chem Int Ed 56:2022–2025

    Google Scholar 

  76. Peters R, Xin Z, Maier F (2010) Catalyst versus substrate induced selectivity: kinetic resolution by palladacycle catalyzed allylic imidate rearrangements. Chem Asian J 5:1770–1774

    Article  CAS  PubMed  Google Scholar 

  77. Johansson C, Lloyd-Jones GC, Norrby PO (2010) Memory and dynamics in Pd-catalyzed allylic alkylation with P,N-ligands. Tetrahedron Asymmetry 21:1585–1592

    Article  CAS  Google Scholar 

  78. Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M (2007) Copper-catalyzed enantioselective substitution of allylic carbonates with diboron: an efficient route to optically active α-chiral allylboronates. J Am Chem Soc 129:14856–14857

    Article  CAS  PubMed  Google Scholar 

  79. Nagata K, Matsukawa S, Imamoto T (2000) Stereoselective, oxidative one-carbon degradation of alkyl(dimethyl)phosphine-boranes. Synthesis of enantiomerically enriched secondary phosphine-boranes. J Org Chem 65:4185–4188

    Google Scholar 

  80. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao Y, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian, Inc., Wallingford CT

    Google Scholar 

  81. Gaussian 16, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT

    Google Scholar 

  82. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  83. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  84. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  85. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065

    Article  CAS  PubMed  Google Scholar 

  86. Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  87. Funes-Ardoiz I, Paton RS (2018) GoodVibes. Version 2.0.1

    Google Scholar 

  88. Grimme S (2012) Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem Eur J 18:9955–9964

    Article  CAS  PubMed  Google Scholar 

  89. Riplinger C, Neese F (2013) An efficient and near linear scaling pair natural orbital based local coupled cluster method. J Chem Phys 138:034106

    Article  PubMed  Google Scholar 

  90. Riplinger C, Sandhoefer B, Hansen A, Neese F (2013) Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J Chem Phys 139:134101

    Article  PubMed  Google Scholar 

  91. Riplinger C, Pinski P, Becker U, Valeev EF, Neese F (2016) Sparse maps–a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J Chem Phys 144:024109

    Google Scholar 

  92. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73

    Google Scholar 

  93. Neese F (2017) Software update: the ORCA program system. Version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:e1327

    Google Scholar 

  94. Python Software Foundation. Python Language Reference, Version 3.6.5. http://www.python.org

  95. Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30

    Article  Google Scholar 

  96. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35:1798–1828

    Article  PubMed  Google Scholar 

  97. Hagberg AA, Schult DA, Swart PJ (2008) Proceedings of the 7th Python in science conference (SciPy 2008), Varoquaux G, Vaught T, Millman J (eds),11

    Google Scholar 

  98. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  99. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579

    Google Scholar 

  100. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  102. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  PubMed  PubMed Central  Google Scholar 

  103. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  104. Parrish RM, Gonthier JF, Corminbœuf C, Sherrill CD (2015) Communication: practical intramolecular symmetry adapted perturbation theory via Hartree-Fock embedding. J Chem Phys 143:051103

    Article  PubMed  Google Scholar 

  105. Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer III HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017) Psi4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J Chem Theory Comput 13:3185–3197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozawa, Y. (2023). Modification of QuinoxP*-Type Bisphosphine Ligands for High-Performance Asymmetric Boryl Substitution of Racemic Allyl Electrophiles. In: Copper(I)-Catalyzed Stereoselective Borylation Reactions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-99-1098-4_2

Download citation

Publish with us

Policies and ethics