Skip to main content

Mechanistic Aspects of Fracture I—Brittle Fracture Models

  • 177 Accesses

Abstract

Brittle fracture models proposed as the mechanism of hydrogen embrittlement are presented. Notions based on the Griffith theory on crack instability and its criteria are explained. Hydrogen effects are included in the parameters used in the criteria. However, the involvement of plasticity is crucial even for brittle-like cases, and various expressions for the effects of plasticity in the crack instability criteria are described.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.A. Zapffe, J. Member, C.E. Sims, Trans. AIME 145, 225–263 (1941)

    Google Scholar 

  2. A.S. Tetelman, W.D. Robertson, Acta Metall. 11, 415–426 (1963)

    CrossRef  CAS  Google Scholar 

  3. A. Ikeda, Tetsu-to-Hagané 70, 792–802 (1984)

    CrossRef  CAS  Google Scholar 

  4. A.N. Stroh, Proc. Roy. Soc. London A 232, 548–560 (1955)

    CrossRef  Google Scholar 

  5. A.H. Cottrell, Trans. Metall. Soc. AIME 212, 192–203 (1958)

    CAS  Google Scholar 

  6. F. Garofalo, Y.T. Chou, V. Ambegaokar, Acta Metall. 8, 504–512 (1960)

    CrossRef  CAS  Google Scholar 

  7. B.A. Bilby, J. Hewitt, Acta Metall. 10, 587–600 (1962)

    CrossRef  CAS  Google Scholar 

  8. N.J. Petch, Phil. Mag. 1, 331–337 (1956)

    CrossRef  CAS  Google Scholar 

  9. D. Tromans, Acta Metall. Mater. 42, 2043–2049 (1994)

    CrossRef  CAS  Google Scholar 

  10. H. Vehoff, W. Rothe, Acta Metall. 31, 1781–1793 (1983)

    CrossRef  CAS  Google Scholar 

  11. R.A. Oriani, P.H. Josephic, Acta Metall. 22, 1065–1074 (1974)

    CrossRef  CAS  Google Scholar 

  12. A.R. Troiano, Trans. ASM 52, 54–80 (1960)

    Google Scholar 

  13. J. Song, W.A. Curtin, Nat. Mater. 12, 145–151 (2013)

    CrossRef  CAS  Google Scholar 

  14. R.M. Thomson, J.E. Sinclair, Acta Metall. 30, 1325–1334 (1982)

    CrossRef  Google Scholar 

  15. I.-H. Lin, R. Thomson, Acta Metall. 34, 187–206 (1986)

    CrossRef  CAS  Google Scholar 

  16. P.G. Marsh, W.W. Gerberich, Acta Metall. Mater. 42, 613–619 (1994)

    CrossRef  CAS  Google Scholar 

  17. W.W. Gerberich, P.G. Marsh, J.W. Hoehn, in Hydrogen Effects in Materials, ed. by A.W. Thompson, N.R. Moody (TMS, Warrendale, 1966), pp. 539–551.

    Google Scholar 

  18. R.A. Mulford, C.J. McMahon Jr., D.P. Pope, H.C. Feng, Metall. Trans. A 7A, 1184–1195 (1976)

    Google Scholar 

  19. M. Aoki, H. Saito, M. Mori, Y. Ishida, M. Nagumo, J. Jpn. Inst. Metals 58, 1141–1148 (1995)

    CrossRef  Google Scholar 

  20. T. Asaoka, C. Dagbert, M. Aucouturier, J. Galland, Scr. Metall. 11, 467–472 (1977)

    CrossRef  CAS  Google Scholar 

  21. C.J. McMahon Jr., Eng. Fract. Mech. 68, 773–788 (2001)

    CrossRef  Google Scholar 

  22. J.P. Hirth, J.R. Rice, Metall. Trans. A 11A, 1501–1511 (1980)

    CrossRef  CAS  Google Scholar 

  23. J.R. Rice, J.-S Wang, Mater. Sci. Eng. A107, 23–40 (1989)

    Google Scholar 

  24. Y. Misin, P. Sofronis, J.L. Bassani, Acta Mater. 50, 3609–3622 (2002)

    CrossRef  Google Scholar 

  25. J.R. Rice, in Proceedings of International Conference on Fracture vol.1 (The Japan Society Promotion of Science, 1965), pp. A269–A318.

    Google Scholar 

  26. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 58, 206–226 (2010)

    CrossRef  CAS  Google Scholar 

  27. M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, H. Kaburaki, Metall. Mater. Trans. A 42A, 330–339 (2011)

    CrossRef  Google Scholar 

  28. M. Yamaguchi, J. Kameda, K. Ebihara, M. Itakura, H. Kaburaki, Phil. Mag. 92, 1349–1368 (2012)

    CrossRef  CAS  Google Scholar 

  29. R. Kirchheim, B. Somerday, P. Sofronis, Acta Mater. 99, 87–98 (2015)

    CrossRef  CAS  Google Scholar 

  30. C.A. McMahon Jr., V. Vitek, Acta Metall. 27, 507–513 (1979)

    CrossRef  CAS  Google Scholar 

  31. M.L. Jokl, V. Vitek, C.J. McMahon Jr., Acta Metall. 28, 1479–1488 (1980)

    CrossRef  Google Scholar 

  32. E. Smith, in Proceedings of Conference Physical Bases of Yield and Fracture (Institue of Physics, Physics Society, Oxford, 1966), pp. 36–46

    Google Scholar 

  33. T. Tani, M. Nagumo, Metall. Mater. Trans. A 26A, 391–399 (1995)

    CrossRef  CAS  Google Scholar 

  34. A.A. Griffith, Trans. Royal Soc. London, A-221 (1920)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiko Nagumo .

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagumo, M. (2023). Mechanistic Aspects of Fracture I—Brittle Fracture Models. In: Fundamentals of Hydrogen Embrittlement. Springer, Singapore. https://doi.org/10.1007/978-981-99-0992-6_9

Download citation