Skip to main content

Hydrogen Trapping and Its Direct Detection

  • 192 Accesses

Abstract

The hydrogen concentration is crucial to the evolution of embrittlement, but most hydrogen atoms are trapped in various lattice defects, manifesting in the apparent hydrogen solubility and diffusivity.  The hydrogen thermal desorption analysis for detecting trapping is described with particular attention to its proper use, depending on the situation. Partitions of hydrogen among different traps are described for both equilibrium and transient states. Recent techniques to visualize hydrogen distributions in metals are also presented.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.R.G. da Silva, S.W. Stafford, R.B. McLellan, J. Less Common Metals 49, 407–420 (1976)

    CrossRef  Google Scholar 

  2. O.D. Gonzalez, Trans. Metall. Soc. AIME 245, 607–612 (1969)

    CAS  Google Scholar 

  3. A.J. Kumnick, H.H. Johnson, Metall. Trans. A 6A, 1087–1091 (1975)

    CrossRef  CAS  Google Scholar 

  4. K. Yamakawa, T. Tsuruta, S. Yoshizawa, Boshoku-Gijutsu 30, 443–449 (1981)

    CAS  Google Scholar 

  5. R.A. Oriani, P.H. Josephic, Acta Metall. 27, 997–1005 (1979)

    CrossRef  CAS  Google Scholar 

  6. K. Yamakawa, in Advances in Delayed Fracture Solution (Iron and Steel Institute Japan, Tokyo, 1997), pp. 77–81

    Google Scholar 

  7. J.P. Hirth, B. Carnahan, Acta Metall. 26, 1795–1803 (1978)

    CrossRef  CAS  Google Scholar 

  8. R.B. McLellan, Acta Metall. 27, 1655–1663 (1979)

    CrossRef  CAS  Google Scholar 

  9. D.N. Beshers, Acta Metall. 6, 521–523 (1958)

    CrossRef  CAS  Google Scholar 

  10. Y. Sugiyama, K. Takai, Acta Mater. 208, 116663 (2021)

    CrossRef  CAS  Google Scholar 

  11. K. Takai, J. Seki, Y. Homma, Tetsu-to-Hagané 81, 1025–1030 (1995)

    CrossRef  CAS  Google Scholar 

  12. A. McNabb, P.K. Foster, Trans. Metall. Soc. AIME. 227, 618–627 (1963)

    CAS  Google Scholar 

  13. T. Kasuya, M. Fuji, J. Appl. Phys. 83, 3039–3048 (1998)

    CrossRef  CAS  Google Scholar 

  14. P.A. Redhead, Vacuum 12, 203–211 (1963)

    CrossRef  Google Scholar 

  15. W.Y. Choo, J.Y. Lee, Metall. Trans. A 13A, 135–140 (1982)

    CrossRef  CAS  Google Scholar 

  16. J.L. Lee, J.Y. Lee, Metall. Trans. A 16A, 468–471 (1985)

    CrossRef  CAS  Google Scholar 

  17. K. Ono, M. Meshii, Acta Metall. Mater. 40, 1357–1364 (1992)

    CrossRef  CAS  Google Scholar 

  18. K. Takai, G. Yamauchi, M. Nakamura, M. Nagumo, J. Jpn. Inst. Metals 62, 267–275 (1998)

    CrossRef  CAS  Google Scholar 

  19. H.E. Kissinger, Analyt. Chem. 29, 1702–1706 (1957)

    CrossRef  CAS  Google Scholar 

  20. M. Nagumo, K. Ohta, H. Saitoh, Scripta Mater. 40, 313–319 (1999)

    CrossRef  CAS  Google Scholar 

  21. R.A. Oriani, Acta Metall. 18, 147–157 (1970)

    CrossRef  CAS  Google Scholar 

  22. K. Takai, R. Watanuki, ISIJ Int. 43, 520–526 (2003)

    CrossRef  CAS  Google Scholar 

  23. A. Turnbull, R.B. Hutchings, D.H. Ferriss, Mater. Sci. Eng. A238, 317–328 (1997)

    Google Scholar 

  24. T. Yamaguchi, M. Nagumo, ISIJ Int. 43, 514–519 (2003)

    CrossRef  CAS  Google Scholar 

  25. M. Enomoto, D. Hirakami, T. Tarui, ISIJ Int. 46, 1381–1387 (2006)

    CrossRef  CAS  Google Scholar 

  26. K. Ebihara, T. Suzudo, H. Kaburaki, K. Takai, S. Takebayashi, ISIJ Int. 47, 1131–1141 (2007)

    CrossRef  CAS  Google Scholar 

  27. Y. Sato, K. Fujita, H. Suzuki, K. Takai, Y. Hagiwara, K. Maejima, N. Miyabayashi, CAMP ISIJ 21, 1375 (2008)

    Google Scholar 

  28. N. Abe, H. Suzuki, K. Takai, N. Ishikawa, H. Sueyoshi, Mater. Sci. Tech. Conf. Exhibition 2011, MS & T’11, pp. 1277–1284

    Google Scholar 

  29. B.G. Pound, G.A. Wright, R.M. Sharp, Acta Metall. 35, 263–270 (1987)

    CrossRef  CAS  Google Scholar 

  30. P. Lacombe, M. Aucouturier, J. Chéne, in Hydrogen Embrittlement and Stress Corrosion Cracking, ed. by R. Gibara, R.F. Hehemann (ASM, Metals Park OH, 1984), pp. 79–102

    Google Scholar 

  31. J. Chéne, A.M. Brass, in Hydrogen Effects in Materials, ed by A.W. Thompson, N.R. Moody (TMS, Warrendale PA 1996), pp. 47–59

    Google Scholar 

  32. M. Aoki, H. Saito, N. Mori, Y. Ishida, M. Nagumo, J. Jpn. Inst. Metals 58, 1141–1148 (1994)

    CrossRef  CAS  Google Scholar 

  33. H. Saitoh, T. Hishi, T. Misawa, T. Ohnishi, Y. Noya. T. Matsuzaki, T. Watanabe, J. Nucl. Mater. 258/263, 1404–1408 (1998)

    Google Scholar 

  34. J. Overjero-Garcia, J. Mater. Sci. 20, 2623–2629 (1985)

    CrossRef  Google Scholar 

  35. K. Ichitani, M. Kanno, S. Kuramoto, ISIJ Int. 43, 496–504 (2003)

    CrossRef  CAS  Google Scholar 

  36. T. Shober, C. Dieker, Metall. Trans. A 14A, 2440–2442 (1983)

    CrossRef  Google Scholar 

  37. K. Takai, J. Seki, G. Yamauchi, Y. Homma, J. Japan Inst. Metals 58, 1380–1385 (1994)

    CrossRef  CAS  Google Scholar 

  38. J. Kinugasa, S. Yabu, K. Shibata, T. Hiramatsu, M. Kawamori, F. Yusei, ISIJ Int. 61, 1091–1098 (2021)

    CrossRef  CAS  Google Scholar 

  39. M. Kawamori, S. Yabu, The 190th Committee on Hydrogen Function Analyses in Materials (2016)

    Google Scholar 

  40. T.E. Madey, J.T. Yates Jr., J. Vac. Sci. Technol. 8, 525–555 (1971)

    CrossRef  CAS  Google Scholar 

  41. K. Ishikawa, M. Yoshimura, K. Ueda, Y. Sakai, Rev. Sci. Instr. 68, 4103–4106 (1997)

    CrossRef  CAS  Google Scholar 

  42. T. Takagi, T. Gotoh, Surf. Sci. 287(288), 361–365 (1993)

    CrossRef  Google Scholar 

  43. N. Miyauchi, T. Iwasawa, T. Yakabe, M. Tosa, T. Shindo, S. Takagi, A.N. Itakura, Appl. Surf. Sci. 492, 280–284 (2019)

    CrossRef  CAS  Google Scholar 

  44. N. Miyauchi, T. Iwasawa, Y. Murase, T. Yakabe, M. Kitajima, S. Takagi, T. Akiyama, S. Aoyagi, A.N. Itakura, Appl. Surf. Sci. 527, 146710 (2020)

    CrossRef  CAS  Google Scholar 

  45. A.N. Itakura, N. Miyauchi, T. Iwasawa, Y. Murase, T. Yakabe, M. Kitajima, Sci. Rep. 11, 8553 (2021)

    CrossRef  CAS  Google Scholar 

  46. N. Miyauchi, K. Hirata, Y. Murase, H.A. Sakaue, T. Yakabe, A.N. Itakura, T. Gotoh, S. Takagi, Scripta Mater. 144, 69–73 (2018)

    CrossRef  CAS  Google Scholar 

  47. W. Müller, J.A. Panitz, S.B. McLane, Rev. Sci. Instruments 39, 83–86 (1968)

    CrossRef  Google Scholar 

  48. J. Takahashi, K. Kawakami, Y. Kobayashi, T. Tarui, Scripta Mater. 63, 261–264 (2010)

    CrossRef  CAS  Google Scholar 

  49. J. Takahashi, K. Kawakami, Y. Kobayashi, Acta Mater. 153, 193–204 (2018)

    CrossRef  CAS  Google Scholar 

  50. A. Griesche, E. Dabah, T. Kannengiesser, N. Kardjilov, A. Hilger, I. Manke, Acta Mater. 78, 14–22 (2014)

    CrossRef  CAS  Google Scholar 

  51. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921–2923 (1991)

    CrossRef  Google Scholar 

  52. S. Evers, C. Senoz, M. Rohwerder. Sci. Technol. Adv. Mater. 14, 014201 (2013)

    CrossRef  Google Scholar 

  53. C. Senöz, S. Evers, M. Stratmann, M. Rohwerder, Electrochem. Commun. 13, 1542–1545 (2011)

    CrossRef  Google Scholar 

  54. W. Krieger, S.V. Merzlikin, A. Bashir, A. Szczepaniak, H. Springer, M. Rohwerder, Acta Mater. 144, 235–245 (2018)

    CrossRef  CAS  Google Scholar 

  55. M. Koyama, A. Bashir, M. Rohwerder, S.V. Merzlikin, E. Akiyama, K. Tsuzaki, D. Raabe, J. Electrochem. Soc. 162, C638–C647 (2015)

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiko Nagumo .

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagumo, M. (2023). Hydrogen Trapping and Its Direct Detection. In: Fundamentals of Hydrogen Embrittlement. Springer, Singapore. https://doi.org/10.1007/978-981-99-0992-6_2

Download citation