Skip to main content

Nuclear Fuel Reprocessing

  • Chapter
  • First Online:
Nuclear Fuel Cycle

Abstract

The fissile isotopes 235U and 239Pu undergo nuclear fission on bombardment with neutrons and thereby produce heat, which is harnessed in the turbines and converted to electricity. Fission involves the breaking of the heavy fissile nuclei (uranium (U) or plutonium (Pu)) into various elements of lower mass/atomic number known as fission products. Nuclear fuel reprocessing is a vital link in closure of a nuclear fuel cycle. The present chapter describes the various methodologies being employed for the reprocessing of spent nuclear fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Taylor (ed.), Reprocessing and Recycling of Spent Nuclear Fuel (Woodhead Publishing, 2015).

    Google Scholar 

  2. J.J. Katz, G.T. Seaborg, L.R. Morss, The Chemistry of the Actinide Elements, vol. II, 2nd ed. (Chapman and Hall, London, 1986).

    Google Scholar 

  3. D.D. Sood, S.K. Patil, Chemistry of nuclear fuel reprocessing: current status. J. Radioanal. Nucl. Chem. 203(2), 547–573 (1996)

    Article  Google Scholar 

  4. G.M. Ritcey, A.W. Ashbrook, Solvent Extraction: Principles and Applications to Process Metallurgy (Elsevier Science Publishing Co., Inc., Part I, 1984)

    Google Scholar 

  5. J.D. Law, T.A. Todd, Liquid-Liquid Extraction Equipment (Idaho National Laboratory, United States, 2008). INL/CON-08-15151.

    Google Scholar 

  6. M. Benedict, T.H. Pigford, H.W. Levi, Nuclear Chemical Engineering (McGraw Hill Book Company, New York, 1981), pp.172–174

    Google Scholar 

  7. P.K. Dey, N.K. Bansal, Spent fuel reprocessing: a vital link in Indian nuclear power program. Nucl. Eng. Des. 236, 723–729 (2006)

    Article  Google Scholar 

  8. W.D. Bond, Thorex process, in Science and Technology of Tributyl Phosphate (Applications of Tributyl Phosphate in Nuclear Fuel Reprocessing), vol. III, ed. by W.W Schulz, L.L. Burger, J.D. Navratil, K.P. Bender (CRC Press, Boca Raton, Florida, USA, 1990)

    Google Scholar 

  9. N.K. Pandey, N. Desigan, A. Ramanujam, PUREX and THOREX Processes (Aqueous Reprocessing), ed. by S. Hashmi. Materials Science and Materials Engineering (Oxford, Elsevier; 2016), pp. 1–15.

    Google Scholar 

  10. D. Das, S.R. Bharadwaj (Eds.), Thoria-based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing, and Waste Management (Springer-Verlag, London, 2013).

    Google Scholar 

  11. K. Anantharaman, P.R.Vasudeva Rao, Global perspective on thorium fuel, in Nuclear Energy Encyclopedia: Science, Technology, and Applications, ed. by S.B. Krivit, J.H. Lehr, T.B. Kingery (Wiley, 2011), pp 89–100.

    Google Scholar 

  12. R. Natarajan, Baldev Raj, Fast reactor fuel reprocessing technology: successes and challenges. Energy Procedia 7, 414–421 (2011)

    Google Scholar 

  13. J. Bourges, C. Madic, G. Koehly, M. Lecomte, Dissolution of PuO2 in HNO3 medium with electro generated Ag(II). J. Less-Common Metals 122, 303–311 (1986)

    Google Scholar 

  14. P.R. Vasudeva Rao, Z. Kolarik, A review of third phase formation in extraction of actinides by neutral organophosphorus extractants. Solv. Extr. Ion Exch. 14(6), 1996, 955–993.

    Google Scholar 

  15. IAEA Nuclear Energy Series; Status of Developments in the Back End of the Fast Reactor Fuel Cycle; No. NF-T-4.2; 2011, pp. 38–64

    Google Scholar 

  16. A. Suresh, C.V.S. Brahmmananda Rao, B. Srinivasulu, N.L. Sreenivasan, S. Subramaniam, K.N. Sabharwal, N. Sivaraman, T.G. Srinivasan, R. Natarajan, P.R. Vasudeva Rao, Development of alternate extractants for separation of actinides. Energy Procedia 39, 120–126 (2013).

    Google Scholar 

  17. V.K. Manchanda, P.N. Pathak, Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Sep. Pur. Technol. 35, 85–103 (2004)

    Google Scholar 

  18. K. Nagarajan, B. Prabhakara Reddy, Suddhasattwa Ghosh, G. Ravisankar, K.S. Mohandas, U. Kamachi Mudali, K.V.G. Kutty, K.V. Kasi Viswanathan, C. Anand Babu, P. Kalyanasundaram, P.R. Vasudeva Rao, B. Raj, Development of pyrochemical reprocessing for spent. Energy Procedia 7, 431–436 (2011).

    Google Scholar 

Further Reading

  1. K.E. Holbert, R.L. Murray, Nuclear Energy, An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, 7th ed. (Butterworth-Heinemann, Elsevier, 2015).

    Google Scholar 

  2. G. Choppin, J.-O. Liljenzin, J. Rydberg, C. Ekbery, Radiochemistry and Nuclear Chemistry, 4th ed. (Elsevier, 2013).

    Google Scholar 

  3. Modern Nuclear Chemistry, Water Loveland, 2nd edn. (David J Morrissey, G T Seaborg, Wiley-Interscience, 2017)

    Google Scholar 

  4. I. Crossland (ed.), Nuclear Fuel Cycle Science and Engineering. Series in Energy (Woodhead Publishing, 2012).

    Google Scholar 

  5. K.H. Leiser, Nuclear and Radiochemistry: Fundamentals and Applications, 2nd ed. (Wiley-VCH, 2001).

    Google Scholar 

  6. K.L. Nash, G.J. Lumetta, Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Management, 1st ed. Series in Energy (Woodhead Publishing, 2011).

    Google Scholar 

  7. K.D. Kok (ed.), Nuclear Engineering Handbook (CRC Press, 2017).

    Google Scholar 

  8. S.B. Krivit, J.H. Lehr, T.B. Kingery (eds.), Nuclear Energy Encyclopedia (Wiley, 2011).

    Google Scholar 

  9. B. Raj, P. Chellapandi, P.R. Vasudeva Rao, Sodium Fast Reactors with Closed Fuel Cycle (CRC Press, 2015).

    Google Scholar 

  10. B. Raj, P.R. Vasudeva Rao, Nuclear Fuel Cycle: Closing the Fuel Cycle (BRNS, 2006).

    Google Scholar 

  11. D.D. Sood, A.V.R. Reddy, N. Ramamoorthy, Fundamentals of Radiochemistry, 4th ed. (Indian Association of Nuclear Chemists and Allied Scientists, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sivaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brahmananda Rao, C.V.S., Achutan, P.V., Sivaraman, N. (2023). Nuclear Fuel Reprocessing. In: Tomar, B.S., Rao, P.R.V., Roy, S.B., Panakkal, J.P., Raj, K., Nandakumar, A.N. (eds) Nuclear Fuel Cycle. Springer, Singapore. https://doi.org/10.1007/978-981-99-0949-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0949-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0948-3

  • Online ISBN: 978-981-99-0949-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics