Skip to main content

Abstract

An intergenerational just distribution of metals is considered the basis for sustainable development. However, metal dissipation caused by the living generation when recycling their end-of-life products contradicts this ideal. To ensure that designers of the living generation are adequately equipped for a transition towards sustainable futures, this paper explores potentials and criteria of educational instruments for the metal selection process to assist students designing products with lowest dissipative losses. It provides insights from user studies in which initial prototypes were tested as a basis for discussion with design professionals. The paper shows that potential of future instruments is generally recognized. However, their practicality is to be tested in further research, also with design students using specific projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Commission on Environment and Development: Our Common Future. UNEP, New York (1987)

    Google Scholar 

  2. Rose, M.: Zukünftige Generationen in der heutigen Demokratie. Springer Verlag, Wiesbaden, Theorie und Praxis der Proxy-Repräsentation (2018)

    Book  Google Scholar 

  3. Tremmel, J.C.: A Theory of Intergenerational Justice. Earthscan, London (2009)

    Google Scholar 

  4. Agius, E.: Obligations of justice towards future generations: a revolution in social and legal thought. In: Agius, E., Busuttil, S., (eds.) Future Generations and International Law. Routledge, London, New York (2013)

    Google Scholar 

  5. Held, M., Reto, D.J., Hempel, M.: Metalle auf der Bühne der Menschheit. Von Ötzis Kupferbeil zum Smartphone im All Metals Age, München (2018)

    Google Scholar 

  6. International Resource Panel Global Resources Outlook 2019: Natural Resources for the Future We Want. UNEP, Nairobi, Kenya (2019)

    Google Scholar 

  7. International Resource Panel Assessing global resource use: A systems approach to resource efficiency and pollution reduction. UNEP, Nairobi, Kenya (2017)

    Google Scholar 

  8. Mancini, L., Vidal Legaz, B., Vizzarri, M., et al.: Mapping the role of raw materials in sustainable development goals. Preliminary Anal. Links Monitor. Ind. Relat. Policy Initiatives. European Union, Luxembourg (2019)

    Google Scholar 

  9. International Resource Panel Metal Stocks in Society. UNEP, Nairobi, Kenya (2010)

    Google Scholar 

  10. Exner, A., Held, M., Kümmerer, K. (eds.): Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-44839-7

    Book  Google Scholar 

  11. Watari, T., Nansai, K., Nakajima, K.: Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 155 (2020)

    Google Scholar 

  12. European Commission Study on the EU’s list of Critical Raw Materials - Final Report. Publications Office of the European Union, Luxembourg (2020)

    Google Scholar 

  13. International Resource Panel Environmental Risks and Challenges of Anthropogenic Metal Flows and Cycles. UNEP, Nairobi, Kenya (2013a)

    Google Scholar 

  14. Bringezu, S.: Possible target corridor for sustainable use of global material resources. Resources 4, 25–54 (2015). https://doi.org/10.3390/resources4010025

  15. Neukirchen, F., Ries, G.: Die Welt der Rohstoffe. Lagerstätten, Förderung und wirtschaftliche Aspekte. Springer Verlag, Berlin, Heidelberg (2014)

    Google Scholar 

  16. Zepf, V., Reller, A., Rennie, C., et al.: Materials critical to the energy industry. an introduction. BP p.l.c (2014)

    Google Scholar 

  17. UNEP Metal recycling: opportunities, limits, infrastructure: this is report 2b of the Global Metal Flows Working Group of the International Resource Panel of UNEP. United Nations Environment Programme, Nairobi, Kenya (2013)

    Google Scholar 

  18. Ciacci, L., Reck, B.K., Nassar, N.T., Graedel, T.E.: Lost by design. Env. Sci Technol 49, 9443–9451 (2015). https://doi.org/10.1021/es505515z

    Article  Google Scholar 

  19. De Schoenmakere, M., Gillabel, J.: European Environment Agency Circular by Design: Products in the Circular Economy (2017)

    Google Scholar 

  20. United Nations The Sustainable Development Goals Report. New York (2020)

    Google Scholar 

  21. Saijo, T. (ed.): ELIAP, Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5407-0

    Book  Google Scholar 

  22. Hagelüken, C., Meskers, C.: Complex life cycles of precious and special metals. In: Graedel TE, Van der Vort E (eds) Linkages of Sustainability: Strüngman forum report. MIT Press, Cambridge (2010)

    Google Scholar 

  23. Reck, B.K., Graedel, T.E.: Challenges in metal recycling. Science 337, 690–695 (2012). https://doi.org/10.1126/science.1217501

    Article  Google Scholar 

  24. Gericke, K., Bender, B., Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Der Produktentwicklungsprozess. In: Bender, B., Gericke, K. (eds.) Pahl/Beitz Konstruktionslehre, pp. 57–93. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-57303-7_4

    Chapter  Google Scholar 

  25. Hales, C., Gooch, S.: Managing Engineering Design. Springer Verlag, London (2004)

    Google Scholar 

  26. Ashby, M., Johnson, K.: Materials and Design. The Art and Science of Material Selection in Product Design. Butterworth-Heinemann, Burlington (2010)

    Google Scholar 

  27. Dorst, K., Cross, N.: Creativity in the design process: co-evolution of problem-solution. Des Stud 22, 425–437 (2001)

    Article  Google Scholar 

  28. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books (1983)

    Google Scholar 

  29. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Bloomsbury Academic, London, New York (2011)

    Google Scholar 

  30. Nelson, H.G., Stolterman, E.: The Design Way: Intentional Change in an Unpredictable World, 2nd edn. MIT Press, Cambridge, MA, USA (2012)

    Book  Google Scholar 

  31. Van Schaik, A., Reuter, M.A.: Product centric simulation based design for recycling (DfR) and design for resource efficiency (DfRE) - 10 fundamental rules & general guidelines for design for recycling & resource efficiency. NVMP/Wecycle: Zoetermeer The Netherlands (2014)

    Google Scholar 

  32. Worrell, E., Reuter, M.A.: Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists. Elsevier, Waltham (2014)

    Google Scholar 

  33. Martens, H., Goldmann, D.: Recyclingtechnik. Fachbuch für Lehre und Praxis, 2nd ed. Springer Verlag, Wiesbaden (2016)

    Google Scholar 

  34. Heibeck, M., Rudolph, M., Modler, N., et al.: Characterizing material liberation of multi-material lightweight structures from shredding experiments and finite element simulations. Miner. Eng. 172 (2021). https://doi.org/10.1016/j.mineng.2021.107142

  35. Wilson, R.J., Veasey, T.J., Squires, D.M.: The application of mineral processing techniques for the recovery of metal from post-consumer wastes. Miner. Eng. 7, 975–984

    Google Scholar 

  36. Heiskanen, K.: Physical separation 101. In: Worrell E., Reuter, M.A., (eds.) Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists. Elsevier, Waltham, pp. 537−543 (2014)

    Google Scholar 

  37. van Schaik, A., Reuter, M.A.: Recycling indices visualizing the performance of the circular economy. World Metall 16 (2016)

    Google Scholar 

  38. Björkman, B., Samuelsen, C.: Recycling of steel. In: Worrell, E., Reuter, M.A., (eds.) Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists. Elsevier, Waltham (2014)

    Google Scholar 

  39. Outokumpu Outokumpu Tornio Works - From Chrome Ore to Stainless Steel (2012). https://www.youtube.com/watch?v=wfSKtoAFBRQ. Accessed 11 May 2022

  40. Bender, B., et al.: Gestaltungsrichtlinien. In: Bender, B., Gericke, K. (eds.) Pahl/Beitz Konstruktionslehre, pp. 567–828. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-57303-7_16

    Chapter  Google Scholar 

  41. Graedel, T.E., Reck, B.K., Miatto, A.: Alloy information helps prioritize material criticality lists. Nat. Commun. 13 (2022). https://doi.org/10.1038/s41467-021-27829-w

  42. Liedtke, C., Bienge, K., Wiesen, K., et al.: Resource use in the production and consumption system - the MIPS approach. Resources 3, 544–574 (2014)

    Article  Google Scholar 

  43. Lorenzi, I.: Barriers perceived to engaging with climate change among the UK public and their policy implications. Glob. Environ. Change 17, 445–459 (2007). https://doi.org/10.1016/j.gloenvcha.2007.01.004

    Article  Google Scholar 

  44. Jones, C., Hine, D.W., Marks, A.D.G.: The Future is now: reducing psychological distance to increase public engagement with climate change. Risk Anal 37, 331–341 (2017). https://doi.org/10.1111/risa.12601

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Scholarship Programme of The Ger-man Federal Environmental Foundation (DBU). We thank all the re-viewers for their constructive feedback.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Schoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schoch, K., Hemmert, F., Liedtke, C. (2023). Form Follows Recyclability? Instruments for Dissipation-Aware Product Design. In: García-Peñalvo, F.J., García-Holgado, A. (eds) Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality. TEEM 2022. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0942-1_98

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0942-1_98

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0941-4

  • Online ISBN: 978-981-99-0942-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics