Skip to main content

Development of Algorithms and Methods for the Simulation and Improvement in the Quantum Natural Language Processing Area

  • 280 Accesses

Part of the Lecture Notes in Educational Technology book series (LNET)


To achieve faster computational speeds than classical computing, quantum computing is rapidly evolving to become one of the most popular areas of computer engineering. The advent of Noisy Intermediate Scale Quantum (NISQ) devices has made it possible to perform this work on quantum computers in areas like chemistry or machine learning. In the field of machine learning, one of the sub-areas of interest is quantum natural language processing. One of the lines of research already allows not only the encoding of words into qubits, also the association of these words -segmented according to their syntactic categorization-, to quantum combinational circuits or ansatz to allow, for example, the association of this circuit to a neural network.


  • Quantum Computing
  • Quantum Machine Learning
  • Quantum Natural Language Processing

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Coecke, B.: The mathematics of text structure (2019). arXiv:1904.03478.

  2. Coecke, B., de Felice, G., Meichanetzidis, K., Toumi, A.: Foundations for near-term quantum natural language processing. arXiv: 2012.03755 (2020).

  3. Chen, Y., Pan, Y., Zhang, G., Cheng, S.: Detecting quantum entanglement with unsupervised learning (2021).

  4. Chen, B.-Q., Niu, X.-F.: Quantum neural network with improved quantum learning algorithm. Int. J. Theor. Phys. 59(7), 1978–1991 (2020).

    CrossRef  Google Scholar 

  5. García-Holgado, A., Marcos-Pablos, S., García-Peñalvo, F.J.: Guidelines for performing systematic research projects reviews. Int. J. Interact. Multimedia Artif. Intell. 6(2), 136–144 (2020)

    Google Scholar 

  6. García-Peñalvo, F.J.: Developing robust state-of-the-art reports: systematic literature reviews. Educ. Knowl. Soc. 23 (2022). Article e28600.

  7. Geerts, G.: A design science research methodology and its application to accounting information systems research. Int. J. Acc. Inf. Syst., 142–151 (2011)

    Google Scholar 

  8. de Felice, G., Toumi, A., Coecke, B.: DisCoPy: monoidal categories in python. Electron. Proc. Theor. Comput. Sci. 333, 183–197 (2021)

    CrossRef  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  10. Kartsaklis, D., et al.: lambeq: an efficient high-level python library for quantum NLP (2021).

  11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Technical report, (EBSE-2007-01) (2007).

  12. Li, J., Lin, S., Yu, K.Y., Gongde Guo, G.: Quantum k-nearest neighbor classification algorithm based on hamming distance (2021)

    Google Scholar 

  13. Lorenz, R., Pearson, A., Meichanetzidis, K., Kartsaklis, D., Coecke, B.: QNLP in practice: Running compositional models of meaning on a quantum computer (2021)

    Google Scholar 

  14. Meichanetzidis, K., Toumi, A., de Felice, G., Coecke, B.: Grammar-aware question-answering on quantum computers (2020)

    Google Scholar 

  15. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, T.P.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 6(7) (2009). Article e100097

    Google Scholar 

  16. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst., 45–77 (2007)

    Google Scholar 

  17. Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J.: Systematic literature review: quantum machine learning and its applications (2022).

  18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 303–332 (1999)

    Google Scholar 

  19. Tacchino, F., Barkoutsos, P., Macchiavello, C., Tavernelli, I., Gerace, D., Bajoni, D.: Quantum implementation of an artificial feed-forward neural network. Quantum Sci. Technol. 5(4) (2019). arXiv:1912.12486.

  20. Havlíček, V., et al.: Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Peral-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peral-García, D., Cruz-Benito, J., García-Peñalvo, F.J. (2023). Development of Algorithms and Methods for the Simulation and Improvement in the Quantum Natural Language Processing Area. In: García-Peñalvo, F.J., García-Holgado, A. (eds) Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality. TEEM 2022. Lecture Notes in Educational Technology. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0941-4

  • Online ISBN: 978-981-99-0942-1

  • eBook Packages: EducationEducation (R0)