Skip to main content

Terpenoids in Nanomaterials: Synthesis, Characterization, and Their Application

  • Chapter
  • First Online:
Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications

Part of the book series: Smart Nanomaterials Technology ((SNT))

Abstract

Natural compounds have been recently explored for their potential to generate nanoparticle (NPs) out of which secondary metabolites, like terpenoid-rich essential oils, are found to be the most promising ones. Terpenoid metabolites are responsible for performing a wide variety of essential functions in plants. Moreover, they also exhibit a wide spectrum of biological activities like antiviral, antibacterial, antimalarial, anticancer activity as well as anti-inflammatory. Terpene-based drugs such as Taxol and Artemisinin are already well known for their bioactivity. Tea tree oil has long been used in traditional medicine as a powerful antimicrobial agent against a variety of pathogenic bacteria. These terpenoids can be directly adsorbed on the surface of NPs through interactions with carbonyl groups or electrons as well as they can be used for synthesis of nanosystems as nanogels/nanocolloids and can also be entrapped or adsorbed in any nanosystem. This chapter elaborates on the types and characteristics of biosynthesized terpenoids-based NPs and their potential pharmacological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayalew H, Tewelde E, Abebe B, Alebachew Y, Tadesse S (2022) Endemic medicinal plants of Ethiopia: Ethnomedicinal uses, biological activities and chemical constituents. J Ethnopharmacol 293:115307

    Article  CAS  PubMed  Google Scholar 

  2. Husen A (2021) Traditional herbal therapy for the human immune system. Taylor & Francis Group, LLC, 6000 Broken Sound Pkwy, NW

    Google Scholar 

  3. Husen A (2022a) Exploring poisonous plants: medicinal values, toxicity response and other potential uses. Taylor & Francis Group, LLC, 6000 Broken Sound Pkwy, NW

    Google Scholar 

  4. Husen A (2022b) Environmental pollution and medicinal plants. Taylor & Francis Group, LLC, 6000 Broken Sound Pkwy, NW

    Google Scholar 

  5. Husen A (2022c) Herbs, shrubs and trees of potential medicinal benefits. Taylor & Francis Group, LLC, 6000 Broken Sound Pkwy. NW

    Google Scholar 

  6. Husen A, Bachheti RK, Bachheti A (2021) Non-timber forest products (Food, Healthcare and Industrial Applications). Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland

    Google Scholar 

  7. Twaij BM, Hasan MN (2022) Bioactive secondary metabolites from plant sources: types, synthesis, and their therapeutic uses. Int J Plant Biol 13(1):4–14

    Article  Google Scholar 

  8. Husen A, Iqbal M (2019a) Nanomaterials and plant potential: an overview. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, pp 3–29 (https://doi.org/10.1007/978-3-030-05569-1_1

  9. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(229):1–24

    CAS  Google Scholar 

  10. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnology 12(1):1–16

    Article  Google Scholar 

  11. Husen A, Iqbal M (2019b) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-05569-1

  12. Husen, A, Jawaid, M (2020) Nanomaterials for agriculture and forestry applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA. https://doi.org/10.1016/C2018-0-02349-X

  13. Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A (2022) Potential applications of engineered nanoparticles in plant disease management: a critical update. Chemosphere 295:133798

    Article  CAS  PubMed  Google Scholar 

  14. Kumar A, Choudhary A, Kaur H, Mehta S, Husen A (2021) Metal-based nanoparticles, sensors and their multifaceted application in food packaging. J Nanobiotechnology 19(256):1–25. https://doi.org/10.1186/s12951-021-00996-0

    Article  Google Scholar 

  15. Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and nanosensors application in agroecosystems. Nano Res Lett 16:136. https://doi.org/10.1186/s11671-021-03593-0

    Article  Google Scholar 

  16. Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW (2022) Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment. Fuel 329:125408

    Article  CAS  Google Scholar 

  17. Islam S, Thangadurai D, Adetunji CO, Nwankwo W, Kadiri O, Makinde S, … Adetunji JB (2020) Nanomaterials and nanocoatings for alternative antimicrobial therapy. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications, pp 1–17

    Google Scholar 

  18. Chandraker SK, Kumar R (2022) Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 1–35

    Google Scholar 

  19. Habibullah G, Viktorova J, Ruml T (2021) current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett 16(1):1–12

    Article  Google Scholar 

  20. Perveen R, Shujaat S, Qureshi Z, Nawaz S, Khan MI, Iqbal M (2020) Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J Market Res 9(4):7817–7827

    CAS  Google Scholar 

  21. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220

    Article  CAS  PubMed  Google Scholar 

  22. Kyomuhimbo HD, Michira IN, Mwaura FB, Derese S, Feleni U, Iwuoha EI (2019) Silver–zinc oxide nanocomposite antiseptic from the extract of bidens pilosa. SN Appl Sci 1(7):1–17

    Article  CAS  Google Scholar 

  23. Yazdanian M, Rostamzadeh P, Rahbar M, Alam M, Abbasi K, Tahmasebi E, Tebyaniyan H, Ranjbar R, Seifalian A, & Yazdanian A (2022) The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review. Bioinorg Chem Appl

    Google Scholar 

  24. Naidi SN, Harunsani MH, Tan AL, Khan MM (2021) Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 9(28):5599–5620

    Article  CAS  PubMed  Google Scholar 

  25. Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, … Sun J (2021) Nanobiotechnological advancements in agriculture and food industry: applications, nanotoxicity, and future perspectives. Sci Total Environ 792:148359

    Google Scholar 

  26. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Emerging technologies and management of crop stress tolerance. Academic Press, pp 159–180

    Google Scholar 

  27. Hassanzadeh P, Atyabi F, Dinarvand R (2022) Nanobionics: from plant empowering to the infectious disease treatment. J Control Release 349:890–901

    Article  CAS  PubMed  Google Scholar 

  28. Hu J, Xianyu Y (2021) When nano meets plants: a review on the interplay between nanoparticles and plants. Nano Today 38:101143

    Article  CAS  Google Scholar 

  29. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharma G, Nim S, Alle M, Husen A, Kim JC (2022) Nanoparticle-mediated delivery of flavonoids for cancer therapy: prevention and treatment. In: Kim JC, Alle M, Husen A (eds) Smart nanomaterials in biomedical applications. nanotechnology in the life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_3

  31. Elnahal AS, El-Saadony MT, Saad AM, Desoky ESM, El-Tahan AM, Rady MM, El-Tarabily KA (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 1–34

    Google Scholar 

  32. Bano A, Gupta A, Sharma S, & Sharma R (2020) Recent developments in nanocarrier-based nutraceuticals for therapeutic purposes. Biogenic Nano-Particles and their Use in Agro-ecosystems, 371–391

    Google Scholar 

  33. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2(3):251–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bano A, Gupta A, Rai S, Fatima T, Sharma S, Pathak N (2021) Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Plant Stress Physiol—Perspect Agricult 1–18

    Google Scholar 

  35. Kandar CC (2021) Secondary metabolites from plant sources. In: Bioactive natural products for pharmaceutical applications. Springer, Cham, pp 329–377

    Google Scholar 

  36. Terletskaya NV, Korbozova NK, Grazhdannikov AE, Seitimova GA, Meduntseva ND, Kudrina NO (2022). Accumulation of Secondary Metabolites of Rhodiola semenovii Boriss. In: Situ in the dynamics of growth and development. Metabolites 12(7):622

    Google Scholar 

  37. Zhao Y, Zhang Q, Li J, Yan X, He H, Gao X, Jia G (2021) High temperature in the root zone repressed flowering in Lilium× formolongi by disturbing the photoperiodic pathway and reconfiguring hormones and primary metabolism. Environ Exp Bot 192:104644

    Article  CAS  Google Scholar 

  38. Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, … Hasanuzzaman M (2022) Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. Int J Mol Sci 23(7):3741

    Google Scholar 

  39. Yeshi K, Crayn D, Ritmejerytė E, Wangchuk P (2022) Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27(1):313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hassanisaadi M, Bonjar AHS, Rahdar A, Varma RS, Ajalli N, Pandey S (2022) Eco-friendly biosynthesis of silver nanoparticles using Aloysia citrodora leaf extract and evaluations of their bioactivities. Mater Today Commun 104183

    Google Scholar 

  41. Pungle R, Nile SH, Makwana N, Singh R, Singh RP, Kharat AS (2022) Green synthesis of silver nanoparticles using the Tridax procumbens plant extract and screening of its antimicrobial and anticancer activities. Oxid Med Cell Longevity

    Google Scholar 

  42. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J (2022) Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 14(7):2534–2571

    Article  CAS  PubMed  Google Scholar 

  43. Nitnavare R, Bhattacharya J, Thongmee S, Ghosh S (2022) Utilizing photosynthetic microbes in nanobiotechnology: applications and perspectives. Sci Total Environ 156457

    Google Scholar 

  44. Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M (2021) Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater 4(11):11428–11457

    Article  CAS  Google Scholar 

  45. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5(5):4866–4883

    Article  CAS  Google Scholar 

  46. Darroudi M, Yazdi MET, Amiri MS (2020) Plant-mediated biosynthesis of nanoparticles. In: 21st century nanoscience—a handbook. CRC Press, pp 1–1

    Google Scholar 

  47. Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TVM, Kim KJ, Shin HM (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol, B 146:10–17

    Article  CAS  PubMed  Google Scholar 

  48. Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules 12(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 132531

    Google Scholar 

  50. Reddy NV, Li H, Hou T, Bethu MS, Ren Z, Zhang Z (2021) Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities. Int J Nanomed 16:15

    Article  CAS  Google Scholar 

  51. Ghoreishi SM, Behpour M, Khayatkashani M (2011) Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E 44(1):97–104

    Article  CAS  Google Scholar 

  52. Naeem GA, Muslim RF, Rabeea MA, Owaid MN, Abd-Alghafour NM (2020) Punica granatum L. mesocarp-assisted rapid fabrication of gold nanoparticles and characterization of nano-crystals. Environ Nanotechnol Monitor Manag 14:100390

    Google Scholar 

  53. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414

    Article  CAS  PubMed  Google Scholar 

  54. Boncan DAT, Tsang SS, Li C, Lee IH, Lam HM, Chan TF, Hui JH (2020) Terpenes and terpenoids in plants: interactions with environment and insects. Int J Mol Sci 21(19):7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X (2020) Advances in pharmacological activities of terpenoids. Nat Prod Commun 15(3):1934578X20903555

    Google Scholar 

  56. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res: Int J Devoted Pharmacol Toxicol Eval Nat Prod Derivat 21(4):308–323

    Article  CAS  Google Scholar 

  57. Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34(1):3–21

    Article  CAS  Google Scholar 

  58. Zwenger S, Basu C (2008) Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 3(1):1

    Google Scholar 

  59. Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Coll Interf Sci 234:132–141

    Article  Google Scholar 

  60. Omar ZA, Abduljabar RS, Sajadi SM, Mahmud SA, Yahya RO (2022) Recent progress in eco-synthesis of essential oil-based nanoparticles and their possible mechanisms. Ind Crops Prod 187:115322

    Article  CAS  Google Scholar 

  61. Cox-Georgian D, Ramadoss N, Dona C, Basu C (2019) Therapeutic and medicinal uses of terpenes. In: Medicinal plants. Springer, Cham pp 333–359

    Google Scholar 

  62. Adnan M, Patel M, Reddy MN, Alshammari E (2018) Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci Rep 8(1):1–12

    Article  Google Scholar 

  63. Boureau L, Pribat A, Mortain-Bertrand A, Bert LS, Rolin D, Teyssier E, Gallusci P (2013) Metabolic engineering of isoprenoid biosynthesis. Natural products. Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, Germany, pp. 2814–2851

    Google Scholar 

  64. Hernández ÁP, Micaelo A, Piñol R, García-Vaquero ML, Aramayona JJ, Criado JJ, … Fuentes M (2022) Comprehensive and systematic characterization of multi-functionalized cisplatin nano-conjugate: from the chemistry and proteomic biocompatibility to the animal model. J Nanobiotechnol 20(1):1–19

    Google Scholar 

  65. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G (2018) Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6):940

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  CAS  PubMed  Google Scholar 

  67. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  CAS  PubMed  Google Scholar 

  68. Tang Z, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18(24):3203–3224

    Article  CAS  Google Scholar 

  69. Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 9(1):1–9

    Article  CAS  Google Scholar 

  70. Abbas HS, Mahmoud AM, Wahed RA, Elsantawy MAA, Hamdy NM, Ismail SE, Nabil MA (2021) Prospects of using bioactive compounds in nanomaterials surface decoration and their biomedical purposes. Int Nano Lett 1–14

    Google Scholar 

  71. Faisal S, Jan H, Shah SA, Shah S, Khan A, Akbar MT, … Syed S (2021) Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega 6(14):9709–9722

    Google Scholar 

  72. Asdagh A, Karimi Sani I, Pirsa S, Amiri S, Shariatifar N, Eghbaljoo–Gharehgheshlaghi H, … Taniyan A (2021) Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. J Polym Environ 29(1):335–349

    Google Scholar 

  73. Waris M, Nasir S, Abbas S, Azeem M, Ahmad B, Khan NA, … Mahboob S (2020) Evaluation of larvicidal efficacy of Ricinus communis (Castor) and synthesized green silver nanoparticles against Aedes aegypti L. Saudi J Biol Sci 27(9):2403–2409

    Google Scholar 

  74. Vilas V, Philip D, Mathew J (2016) Biosynthesis of Au and Au/Ag alloy nanoparticles using Coleus aromaticus essential oil and evaluation of their catalytic, antibacterial and antiradical activities. J Mol Liq 221:179–189

    Article  CAS  Google Scholar 

  75. Ni ZJ, Wang X, Shen Y, Thakur K, Han J, Zhang JG, … Wei ZJ (2021) Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 110:78–89

    Google Scholar 

  76. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  PubMed  Google Scholar 

  77. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interf Sci 275:496–502

    Article  CAS  Google Scholar 

  78. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, … Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

    Google Scholar 

  79. Bonifácio B, da Silva PB, Ramos M, Negri K, Maria Bauab T, Chorilli M (2014) Int J Nanomed 9:1–5

    Google Scholar 

  80. Fonseca-Santos B, Gremião MPD, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed 10:4981

    Article  CAS  Google Scholar 

  81. Pivetta TP, Simões S, Araújo MM, Carvalho T, Arruda C, Marcato PD (2018) Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf, B 164:281–290

    Article  CAS  Google Scholar 

  82. Cháirez-Ramírez MH, Sánchez-Burgos JA, Gomes C, Moreno-Jiménez MR, González-Laredo RF, Bernad-Bernad MJ, … Rocha-Guzmán NE (2015) Morphological and release characterization of nanoparticles formulated with poly (dl-lactide-co-glycolide) (PLGA) and lupeol: In vitro permeability and modulator effect on NF-κB in Caco-2 cell system stimulated with TNF-α. Food Chem Toxicol 85:2–9

    Google Scholar 

  83. Bano S, Ahmed F, Khan F, Chaudhary SC, Samim M (2020) Targeted delivery of thermoresponsive polymeric nanoparticle-encapsulated lycopene: in vitro anticancer activity and chemopreventive effect on murine skin inflammation and tumorigenesis. RSC Adv 10(28):16637–16649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramachandran S, Thangarajan S (2016) A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington’s disease-like symptoms in wistar rats. Chem Biol Interact 256:25–36

    Article  CAS  PubMed  Google Scholar 

  85. Han Y (2005) Ginkgo Terpene component has an anti-inflammatory effect on Candida Albicans-caused arthritic inflammation. Int Immunopharmacol 5:1049–1056

    Article  CAS  PubMed  Google Scholar 

  86. Zhao Y, Xiong S, Liu P, Liu W, Wang Q, Liu Y, … Chen T (2020) Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in parkinson’s disease. Int J Nanomed 15:10453

    Google Scholar 

  87. Nerome H, Machmudah S, Fukuzato R, Higashiura T, Youn YS, Lee YW, Goto M (2013) Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercritical Fluids 83:97–103

    Article  CAS  Google Scholar 

  88. Gonçalves S, Mansinhos I, Romano A (2023) Role of nanoparticles on modulation of plant secondary metabolism. In: Engineered nanomaterials for sustainable agricultural production, soil improv stress manag. Academic Press, pp 447–473

    Google Scholar 

  89. Chung IM, Rajakumar G, Thiruvengadam M (2018) Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol Hung 69(1):97–109

    Article  CAS  PubMed  Google Scholar 

  90. Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20(12):8636–8648

    Article  CAS  Google Scholar 

  91. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826

    Article  CAS  Google Scholar 

  92. Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12:1667–1675

    Google Scholar 

  93. Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317

    Article  Google Scholar 

  94. Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 180(6):1076–1092

    Article  CAS  PubMed  Google Scholar 

  95. Singh R, Singh DP, Gupta P, Jain P, Mishra T, Kumar A, … Shirke PA (2019) Nanoparticles alter the withanolide biosynthesis and carbohydrate metabolism in Withania somnifera (Dunal). Indus Crops Prod 127:94–109

    Google Scholar 

  96. Wesołowska A, Jadczak P, Kulpa D, Przewodowski W (2019) Gas chromatography-mass spectrometry (GC-MS) analysis of essential oils from AgNPs and AuNPs elicited Lavandula angustifolia in vitro cultures. Molecules 24(3):606

    Article  PubMed  PubMed Central  Google Scholar 

  97. Glusker JP, Katz AK, Bock CW (1999) Metal ions in biological systems. Rigaku J. 16:8–17

    CAS  Google Scholar 

  98. Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chemistry–A Euro J 13(11):3160–3168

    Google Scholar 

  99. Chamani E, Karimi Ghalehtaki S, Mohebodini M, Ghanbari A (2015) The effect of Zinc oxide nano particles and Humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iran J Genet Plant Breed 4(2):11–19

    Google Scholar 

  100. Asl KR, Hosseini B, Shara A, Palazon J (2019) Eng Life Sci 19:73–89

    Google Scholar 

  101. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881

    Article  PubMed  PubMed Central  Google Scholar 

  102. Oloumi H, Soltaninejad R, Baghizadeh A (2015) The comparative effects of nano and bulk size particles of CuO and ZnO on glycyrrhizin and phenolic compounds contents in Glycyrrhiza glabra L. seedlings. Indian J Plant Physiol 20(2):157–161

    Google Scholar 

  103. Álvarez-Chimal R, García-Pérez VI, Álvarez-Pérez MA, Arenas-Alatorre JÁ (2021) Green synthesis of ZnO nanoparticles using a Dysphania ambrosioides extract. Structural characterization and antibacterial properties. Mater Sci Eng: C 118:111540

    Google Scholar 

  104. Catalán A, Pacheco JG, Martínez A, Mondaca MA (2008) In vitro and in vivo activity of Melaleuca alternifolia mixed with tissue conditioner on Candida albicans. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodontol 105(3):327–332

    Article  Google Scholar 

  105. Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, de Jesús Pozos A, … Castañón GM (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed: Nanotechnol Biol Med 4(3):237–240

    Google Scholar 

  106. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  PubMed  Google Scholar 

  107. Martínez A, Rojas N, García L, González F, Domínguez M, Catalán A (2014) In vitro activity of terpenes against Candida albicans and ultrastructural alterations. Oral Surg Oral Med Oral Pathol Oral Radiol 118(5):553–559

    Article  PubMed  Google Scholar 

  108. Xu JS, Li YAO, Cao XUE, Cui Y (2013) The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Exp Ther Med 5(6):1667–1670

    Article  PubMed  PubMed Central  Google Scholar 

  109. Karimi N, Behbahani M, Dini G, Razmjou A (2018) Enhancing the secondary metabolite and anticancer activity of Echinacea purpurea callus extracts by treatment with biosynthesized ZnO nanoparticles. Adv Nat Sci: Nanosci Nanotechnol 9(4):045009

    CAS  Google Scholar 

  110. Raigond P, Raigond B, Kaundal B, Singh B, Joshi A, Dutt S (2017) Effect of zinc nanoparticles on antioxidative system of potato plants. J Environ Biol 38(3):435

    Article  CAS  Google Scholar 

  111. Ahamed TES, Ahamed ESS (2018) Synergy prospect low gamma irradiation doses incorporating elicitation with iron nanoparticles to hyper production biomass yield and bioactive secondary metabolites for cress, medicinal plant. J Plant Sci 6(5):157–163

    Google Scholar 

  112. Sharaf E, Khayam Nekoei S, Fotokian MH, Davoodi D, Hadavand Mirzaei H, Hasanloo T (2013) J Measur Phys Behav 2:177–184

    Google Scholar 

  113. Mohebodini M, Fathi R, Mehri N (2017) Optimization of hairy root induction in chicory (Cichorium intybus L.) and effects of nanoparticles on secondary metabolites accumulation. Iran J Genet Plant Breed 6(2):60–68

    Google Scholar 

  114. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4(5):571–576

    Article  CAS  Google Scholar 

  115. Ahmadi SJ, Outokesh M, Hosseinpour M, Mousavand T (2011) A simple granulation technique for preparing high-porosity nano copper oxide (II) catalyst beads. Particuology 9(5):480–485

    Article  CAS  Google Scholar 

  116. Jani AMM, Losic D, Voelcker NH (2013) Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci 58(5):636–704

    Article  Google Scholar 

  117. Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK (2013) Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf, A 439:101–116

    Article  CAS  Google Scholar 

  118. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17

    Article  Google Scholar 

  119. Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, … Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Element Res 121(1):69–79

    Google Scholar 

  120. Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22(3):1841–1853

    Article  CAS  Google Scholar 

  121. Andriotis EG, Papi RM, Paraskevopoulou A, Achilias DS (2021) Synthesis of d-limonene loaded polymeric nanoparticles with enhanced antimicrobial properties for potential application in food packaging. Nanomaterials 11(1):191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bidyarani N, Kumar U (2019) Study of limonene loaded Zein nanoparticles for sustainable agriculture. In: Adv Spectrosc: Mol Mater. Springer, Singapore, pp 257–267

    Google Scholar 

  123. Goswami A, Patel N, Bhatt V, Raval M, Kundariya M, Sheth N (2022) Lycopene loaded polymeric nanoparticles for prostate cancer treatment: formulation, optimization using Box-behnken design and cytotoxicity studies. J Drug Deliv Sci Technol 67:102930

    Article  CAS  Google Scholar 

  124. Han L, Fu Y, Cole AJ, Liu J, Wang J (2012) Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia 83(4):721–731

    Article  CAS  PubMed  Google Scholar 

  125. Prakash A, Vadivel V (2020) Citral and linalool nanoemulsions: impact of synergism and ripening inhibitors on the stability and antibacterial activity against Listeria monocytogenes. J Food Sci Technol 57(4):1495–1504

    Article  CAS  PubMed  Google Scholar 

  126. Lu WC, Huang DW, Wang CC, Yeh CH, Tsai JC, Huang YT, Li PH (2018) Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal 26(1):82–89

    Article  CAS  PubMed  Google Scholar 

  127. Marei GIK, Rabea EI, Badawy ME (2018) Preparation and characterizations of chitosan/citral nanoemulsions and their antimicrobial activity. Appl Food Biotechnol 5(2):69–78

    CAS  Google Scholar 

  128. Charoenputtakun P, Pamornpathomkul B, Opanasopit P, Rojanarata T, Ngawhirunpat T (2014) Terpene composited lipid nanoparticles for enhanced dermal delivery of all-trans-retinoic acids. Biol Pharmaceut Bull b14-00015

    Google Scholar 

  129. Gengan R, Anand K, Phulukdaree A, Chuturgoon A (2013) A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf, B 105:87–91

    Article  CAS  Google Scholar 

  130. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Ann Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  131. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf, B 74:309–316

    Article  CAS  Google Scholar 

  132. Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci 209:40–48

    Article  CAS  PubMed  Google Scholar 

  133. Vilas V, Philip D, Mathew J (2014) Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochim Acta Part A Mol Biomol Spectrosc 132:743–750

    Article  CAS  Google Scholar 

  134. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10:5221

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Indus Crops Prod 46:132–137

    Google Scholar 

  136. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc. 93:95–99

    Article  CAS  PubMed  Google Scholar 

  137. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 90:173–176

    Article  CAS  Google Scholar 

  138. AbdelHamid AA, Al-Ghobashy MA, Fawzy M, Mohamed MB, Abdel-Mottaleb MMSA (2013) Phytosynthesis of Au, Ag, and Au–Ag Bimetallic nanoparticles using aqueous extract of Sago Pondweed (Potamogeton pectinatus L.). ACS Sustain Chem Eng 1:1520–1529

    Google Scholar 

  139. Sperling R-A, Parak W (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans Royal Soc Lond A: Math Phys Eng Sci 368:1333–1383

    CAS  Google Scholar 

  140. Khan Z, Singh T, Hussain JI, Obaid AY, Al-Thabaiti SA, El-Mossalamy EH (2013) Starchdirected green synthesis, characterization and morphology of silver nanoparticles. Colloids Surf, B 102:578–584

    Article  CAS  Google Scholar 

  141. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593

    Article  CAS  PubMed  Google Scholar 

  142. Rashid M, Sabir S (2014) Biosynthesis of self-dispersed silver colloidal particles using the aqueous extract of P. peruviana for sensing dl-Alanine. ISRN Nanotechnol 2014:7

    Google Scholar 

  143. Rauf A, Ahmad T, Khan A, Maryam, Uddin G, Ahmad B, … Al-Harrasi A (2021) Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif Cells, Nanomed Biotechnol 49(1):194–203

    Google Scholar 

  144. Tanna JA, Chaudhary RG, Juneja HD, Gandhare NV, Rai AR (2015) Histidine-capped ZnO nanoparticles: an efficient synthesis, spectral characterization and effective antibacterial activity. BioNanoScience 5(3):123–134

    Article  Google Scholar 

  145. Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. TrAC, Trends Anal Chem 30(1):4–17

    Article  CAS  Google Scholar 

  146. Sharma V, Chotia C, Ganesan V, Okram GS (2017) Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Phys Chem Chem Phys 19(21):14096–14106

    Article  CAS  PubMed  Google Scholar 

  147. Almaary KS, Sayed SR, Abd-Elkader OH, Dawoud TM, El Orabi NF, Elgorban AM (2020) Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi J Biol Sci 27(5):1333–1339

    Article  CAS  PubMed  Google Scholar 

  148. Kavitha S, Dhamodaran M, Prasad R, Ganesan M (2017) Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves. Int Nano Lett 7(2):141–147

    Article  CAS  Google Scholar 

  149. Das R, Ali E, Abd Hamid SB (2014) Current applications of x-ray powder diffraction-a review. Rev Adv Mater Sci 38(2)

    Google Scholar 

  150. Patil RB, Chougale AD (2021) Analytical methods for the identification and characterization of silver nanoparticles: a brief review. Mater Today: Proc 47:5520–5532

    CAS  Google Scholar 

  151. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  PubMed  Google Scholar 

  152. Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A (2022a) Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega

    Google Scholar 

  153. Fissan H, Ristig S, Kaminski H, Asbach C, Epple M (2014) Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods 6(18):7324–7334

    Article  CAS  Google Scholar 

  154. Chérif I, Dkhil YO, Smaoui S, Elhadef K, Ferhi M, Ammar S (2022) X-ray diffraction analysis by modified Scherrer, Williamson–Hall and Size–Strain Plot Methods of ZnO nanocrystals synthesized by oxalate route: a potential antimicrobial candidate against foodborne pathogens. J Clust Sci 1–16

    Google Scholar 

  155. Liu XY, Wang JQ, Ashby CR Jr, Zeng L, Fan YF, Chen ZS (2021) Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov Today 26(5):1284–1292

    Article  CAS  PubMed  Google Scholar 

  156. Patil MP, Jin X, Simeon NC, Palma J, Kim D, Ngabire D, … Kim GD (2018) Anticancer activity of Sasa borealis leaf extract-mediated gold nanoparticles. Artif Cells, Nanomed, Biotechnol 46(1):82–88

    Google Scholar 

  157. Madhavan SA, Vinotha P, Uma V, Mahadevi M (2020) Anticancer activity of Pedalium murex linn methanolic leaves extract against A549 human lung cancer cell line. Asian J Adv Res 33–40

    Google Scholar 

  158. Chittasupho C, Athikomkulchai S (2018) Nanoparticles of Combretum quadrangulare leaf extract induce cytotoxicity, apoptosis, cell cycle arrest and anti-migration in lung cancer cells. J Drug Deliv Sci Technol 45:378–387

    Article  CAS  Google Scholar 

  159. Balasubramanian S, Kala SMJ, Pushparaj TL (2020) Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Technol 57:101620

    Article  CAS  Google Scholar 

  160. Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, … Kvítek L (2016) Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B: Biointerf 142:392–399

    Google Scholar 

  161. Tang S, Zheng J (2018) Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater 7(13):1701503

    Article  Google Scholar 

  162. Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167(4):776–790

    Article  CAS  PubMed  Google Scholar 

  163. Długosz O, Chmielowiec-Korzeniowska A, Drabik A, Tymczyna L, Banach M (2022a) Bioactive selenium nanoparticles synthesized from propolis extract and quercetin based on natural deep eutectic solvents (NDES). J Clust Sci 1–12

    Google Scholar 

  164. Długosz O, Ochnik M, Sochocka M, Franz D, Orzechowska B, Anna CK, … Banach M (2022b) Antimicrobial and antiviral activity of selenium sulphide nanoparticles synthesised in extracts from spices in natural deep eutectic solvents (NDES). Sustain Mater Technol 32:e00433

    Google Scholar 

  165. Sani I, Ukwuani-Kwaja AN, Abdulkadir D (2022) Antibacterial activities of plant-derived metallic nanoparticles on some selected multidrug-resistant clinical isolates. Asian J Biol Sci 15(1):15–26

    Google Scholar 

  166. Suriyakalaa U, Antony JJ, Suganya S, Siva D, Sukirtha R, Kamalakkannan S, … Achiraman S (2013) Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata. Colloids Surf B: Biointerf 102:189–194

    Google Scholar 

  167. Sun RWY, Chen R, Chung NPY, Ho CM, Lin CLS, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun 40:5059–5061

    Article  Google Scholar 

  168. Lasoń E (2020) Topical administration of terpenes encapsulated in nanostructured lipid-based systems. Molecules 25(23):5758

    Article  PubMed  PubMed Central  Google Scholar 

  169. Jacob SJP, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf, B 91:212–214

    Article  Google Scholar 

  170. Satyavani K, Ramanathan T, Gurudeeban S (2011) Green synthesis of silver nanoparticles by using stem derived callus extract of bitter apple (Citrullus colocynthis). Dig J Nanomater Biostruct 6(3):1019–1024

    Google Scholar 

  171. Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31):6341–6350

    Article  CAS  PubMed  Google Scholar 

  172. Muniyappan N, Nagarajan NS (2014) Green synthesis of gold nanoparticles using Curcuma pseudomontana essential oil, its biological activity and cytotoxicity against human ductal breast carcinoma cells T47D. J Environ Chem Eng 2(4):2037–2044

    Article  CAS  Google Scholar 

  173. Mittal AK, Kaler A, Banerjee UC (2012) Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of rhododendron dauricum. Nano Biomed Eng 4(3)

    Google Scholar 

  174. Arif M, Ullah R, Ahmad M, Ali A, Ullah Z, Ali M, … Sher H (2022) Green synthesis of silver nanoparticles using Euphorbia wallichii leaf extract: its antibacterial action against citrus canker causal agent and antioxidant potential. Molecules 27(11):3525

    Google Scholar 

  175. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod 70:356–373

    Article  CAS  Google Scholar 

  176. Mishra SB, Kumari N (2021) Engineering of crystalline nano-suspension of lycopene for potential management of oxidative stress–linked diabetes in experimental animals. BioNanoScience 11(2):345–354

    Article  Google Scholar 

  177. Al-Radadi NS (2022) Biogenic proficient synthesis of (Au-NPs) via aqueous extract of Red Dragon Pulp and seed oil: characterization, antioxidant, cytotoxic properties, anti-diabetic anti-inflammatory, anti-Alzheimer and their anti-proliferative potential against cancer cell lines. Saudi J Biol Sci 29(4):2836–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ayyoub S, Al-Trad B, Aljabali AA, Alshaer W, Al Zoubi M, Omari S, … Tambuwala MM (2022) Biosynthesis of gold nanoparticles using leaf extract of Dittrichia viscosa and in vivo assessment of its anti-diabetic efficacy. Drug Deliv Transl Res 1–7

    Google Scholar 

  179. Chi NTL, Narayanan M, Chinnathambi A, Govindasamy C, Subramani B, Brindhadevi K, … Pikulkaew S (2022) Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. Environ Res 208:112684

    Google Scholar 

  180. Husen A, Siddiqi KS (2022) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  181. Manfredini N, Ilare J, Invernizzi M, Polvara E, Contreras Mejia D, Sironi S, … Sponchioni M (2020) Polymer nanoparticles for the release of fragrances: how the physicochemical properties influence the adsorption on textile and the delivery of limonene. Indus Eng Chem Res 59(28):12766–12773

    Google Scholar 

  182. Liang J, Zhu Y, Gao C, Ling C, Qin J, Wang Q, Wang J (2019) Menthol-modified BSA nanoparticles for glioma targeting therapy using an energy restriction strategy. NPG Asia Mater 11(1), 38

    Google Scholar 

  183. Holz JP, Bottene MK, Jahno VD, Einloft S, Ligabue R (2018) Menthol-loaded PLGA micro and nanospheres: Synthesis, characterization and degradation in artificial saliva. Mater Res 21

    Google Scholar 

  184. Bano A, Gupta A, Rai S, Sharma S, Pathak N (2021) Elucidation of bioactive potential of two commonly grown north Indian Psidium guajava viz., Lalit and Shweta against pathogenic foodborne and MDR bacteria. Biointerf Res Appl Chem 11:14090–14102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, K., Bano, A., Sharma, R., Sharma, S. (2023). Terpenoids in Nanomaterials: Synthesis, Characterization, and Their Application. In: Husen, A. (eds) Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0927-8_5

Download citation

Publish with us

Policies and ethics