Skip to main content

Flavonoids Mediated Nanomaterials Synthesis, Characterization, and Their Applications

  • Chapter
  • First Online:
Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 196 Accesses

Abstract

Phytochemicals are widely assayed for their potent biological activities and successful findings have been reported. However, due to their poor water solubility and non-targeted site accumulation in addition to the diseased site, the potent of the phytochemicals is not at the desired level. In addition, quickly metabolized properties of the compounds are also critical obstacles in reaching the potent of the compound. In order to overcome the mentioned problem, flavonoids have been incorporated/loaded/encapsulated/conjugated to the nanomaterials as nano-carriers. Herewith in the chapter, we used VOSviewer software to reduce the dimension of the topics according to the networks constructed. The core and common flavonoid compounds were retrieved and used for literature reports and discussion section of the current chapter. In this regard, compounds such as hesperidin, rutin, quercetin, tannin/ tannic acid, naringin, naringenin, and kaemferol were reported. According to the in vivo and in vitro reports, flavonoid-mediated nanoparticles exhibited enhanced/higher activities with no appreciable toxic symptoms in comparison to the bare/pure compound or bare nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ab Rashid S, Rosli NSM, Hway TS, Yenn TW, Ring LC, Yusof FAM, Wen-Nee T (2022) Naringenin-grafted polyvinyl alcohol (Na/PVA) nanoparticles: synthesis, characterisation and in vitro evaluation of its antimicrobial efficiency on fresh beef. Trop Life Sci Res 33(1):143

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Samim M, Iqbal Z, Ahmad FJ (2016) Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of Cerebral Ischemia. Int J Biol Macromol 91:640–655

    Article  CAS  PubMed  Google Scholar 

  3. Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  Google Scholar 

  4. Ali SH, Sulaiman GM, Al-Halbosiy MM, Jabir MS, Hameed AH (2019) Fabrication of hesperidin nanoparticles loaded by poly lactic co-Glycolic acid for improved therapeutic efficiency and cytotoxicity. Artif Cells Nanomed. Biotechnol 47(1):378–394

    Article  CAS  PubMed  Google Scholar 

  5. Altinkaynak C, Gulmez C, Atakisi O, Özdemir N (2020) Evaluation of organic-inorganic hybrid nanoflower's enzymatic activity in the presence of different metal ions and organic solvents. Int J Biol Macromol 164:162–171

    Google Scholar 

  6. Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J (2022) Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: a comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ 821:153472

    Article  CAS  PubMed  Google Scholar 

  7. Andrade RG Jr, Dalvi LT, Silva JMC Jr, Lopes GK, Alonso A, Hermes-Lima M (2005) The antioxidant effect of tannic acid on the in vitro copper-mediated formation of free radicals. Arch Biochem Biophys 437(1):1–9

    Article  CAS  PubMed  Google Scholar 

  8. Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS (2018) Environmental stress and secondary metabolites in plants: an overview. In: Plant metabolites and regulation under environmental stress. Academic Press, pp 153–167

    Google Scholar 

  9. Aslam M, Abdullah AZ, Rafatullah M (2021) Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J Ind Eng Chem 98:1–16

    Article  CAS  Google Scholar 

  10. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12):18–40

    Google Scholar 

  11. Broderick GA, Wallace RJ, Ørskov ER (1991) Control of rate and extent of protein degradation. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants: proceedings of the seventh international symposium on ruminant physiology. Academic Press, Waretown, NJ, USA, pp 541–592

    Google Scholar 

  12. Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P (2010) Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 90(7):1238–1244

    Article  CAS  PubMed  Google Scholar 

  13. Cetinkaya H, Kulak M, Karaman M, Karaman HS, Kocer F (2017) Flavonoid accumulation behavior in response to the abiotic stress: can a uniform mechanism be illustrated for all plants. Flavonoids-From Biosynthesis Hum Health 151–65

    Google Scholar 

  14. Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138(4):2099–2107

    Article  CAS  PubMed  Google Scholar 

  15. Chen SC, Chung KT (2000) Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food Chem Toxicol 38(1):1–5

    Article  PubMed  Google Scholar 

  16. Chuang YL, Fang HW, Ajitsaria A, Chen KH, Su CY, Liu GS, Tseng CL (2019) Development of kaempferol-loaded gelatin nanoparticles for the treatment of corneal neovascularization in mice. Pharmaceutics 11(12):635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dabeek WM, Marra MV (2019) Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11(10):2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dajas F (2012) Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol 143(2):383–396

    Article  CAS  PubMed  Google Scholar 

  19. Fang X, Yang C, Wei Y, Ma Q, Yang L, Chen X (2011) Genomics grand for diversified plant secondary metabolites. Plant Diversity Resour 33(1):53–64

    CAS  Google Scholar 

  20. Fuster MG, Carissimi G, Montalbán MG, Víllora G (2020) Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials 10(4):718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gera S, Sampathi S, Maddukuri S, Dodoala S, Junnuthula V, Dyawanapelly S (2022) Therapeutic potential of naringenin nanosuspension: in vitro and in vivo anti-osteoporotic studies. Pharmaceutics 14(7):1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gullon B, Lú-Chau TA. Moreira MT, Lema JM, Eibes G (2017) Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 67:220–235

    Google Scholar 

  23. Gulmez C, Kulak M (2021) New insights to enhance the desired anti-diabetic compounds in medicinal and aromatic plants exposed to abiotic stress factors. In: Gantait S, Verma SK, Sharangi AB (eds) Biotechnology of anti-diabetic medicinal plants. Springer, Singapore

    Google Scholar 

  24. Gulmez C, Altinkaynak C, Özdemir N, Atakisi O (2018) Proteinase K hybrid nanoflowers (P-hNFs) as a novel nanobiocatalytic detergent additive. I J Biol Macromol 119:803–810

    Google Scholar 

  25. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3(1):43–53

    Article  Google Scholar 

  26. Hajialyani M, Hosein Farzaei M, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E (2019) Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules 24(3):648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halder A, Das S, Bera T, Mukherjee A (2017) Rapid synthesis for monodispersed gold nanoparticles in kaempferol and anti-leishmanial efficacy against wild and drug resistant strains. Rsc Adv 7(23):14159–14167

    Article  CAS  Google Scholar 

  28. Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 12(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  29. Husen, A, Iqbal, M (2019). Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-05569-1

  30. Husen A (2019) Natural product-based fabrication of zinc oxide nanoparticles and their application. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, pp 193–291. https://doi.org/10.1007/978-3-030-05569-1_7

  31. Husen A (2022) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  32. Husen A, Jawaid, M (2020) Nanomaterials for agriculture and forestry applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA. https://doi.org/10.1016/C2018-0-02349-X

  33. Ilk S, Saglam N, Özgen M (2017) Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif Cells Nanomed Biotechnol 45(5):907–916

    Article  CAS  PubMed  Google Scholar 

  34. Ilk S, Sağlam N, Özgen M, Korkusuz F (2017) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662

    Article  CAS  PubMed  Google Scholar 

  35. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 7(1):1–13

    Article  Google Scholar 

  36. Jaisinghani RN (2017) Antibacterial properties of quercetin. Microbiol Res 8(1):6877

    Article  Google Scholar 

  37. Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Watanabe K (2016) Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov 21(4):632–639

    CAS  Google Scholar 

  38. Khan T, Ullah N, Khan MA, Nadhman A (2019) Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Colloid Interface Sci 272:102017

    Article  CAS  PubMed  Google Scholar 

  39. Kim TY, Cha SH, Cho S, Park Y (2016) Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Arch Pharm Res 39(4):465–473

    Article  CAS  PubMed  Google Scholar 

  40. Kim CH, Kim JE, Song YJ (2020) Antiviral activities of quercetin and isoquercitrin against human herpesviruses. Molecules 25(10):2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A (2022) Potential applications of engineered nanoparticles in plant disease management: a critical update. Chemosphere 295:133798

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Choudhary A, Kaur H, Mehta S, Husen A (2021) Metal-based nanoparticles, sensors and their multifaceted application in food packaging. J Nanobiotechnol 19(256):1–25. https://doi.org/10.1186/s12951-021-00996-0

    Article  Google Scholar 

  43. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N (2018) Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 40:68–75

    Article  CAS  Google Scholar 

  44. Liu ZQ (2022) What about the progress in the synthesis of flavonoid from 2020? Eur J Med Chem 243:114671

    Article  CAS  PubMed  Google Scholar 

  45. Londoño-Londoño J, de Lima VR, Lara O, Gil A, Pasa TBC, Arango GJ, Pineda JRR (2010) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. Food Chem 119(1):81–87

    Article  Google Scholar 

  46. Lopes L, Brito LM, Bezerra TT, Gomes KN, Carvalho FA, Chaves MH (2018) Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. An Acad Bras Cienc 90:2679–2689

    Article  CAS  PubMed  Google Scholar 

  47. Luo H, Jiang B, Li B, Li Z, Jiang BH, Chen YC (2012) Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int J Nanomedicine 7:3951

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Maalik A, Khan FA, Mumtaz A, Mehmood A, Azhar S, Atif M, Karim S, Altaf Y, Tariq I (2014) Pharmacological applications of quercetin and its derivatives: a short review. Tropical J Pharm Res 13(9):1561–1566

    Article  CAS  Google Scholar 

  49. Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G (2018) Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6):940

    Google Scholar 

  50. Materska M (2008) Quercetin and its derivatives: chemical structure and bioactivity-a review. Polish J Food Nutr Sci 58(4):407–413

    CAS  Google Scholar 

  51. Mohammadzadeh V, Barani M, Amiri MS, Yazdi MET, Hassanisaadi M, Rahdar A, Varma RS (2022) Applications of plant-based nanoparticles in nanomedicine: a review. Sustain Chem Pharm 25:100606

    Article  CAS  Google Scholar 

  52. Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K, Jafari A, Ahmadian E, Gorbani Jahandizi N, Raeesi S (2021) Therapeutic benefits of rutin and its nanoformulations. Phytother Res 35(4):1719–1738

    Article  CAS  PubMed  Google Scholar 

  53. Patil AG, Jobanputra AH (2015) Rutin-chitosan nanoparticles: fabrication, characterization and application in dental disorders. Polym Plast Technol Eng 54(2):202–208

    Article  CAS  Google Scholar 

  54. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15

    Google Scholar 

  55. Periasamy S, Jegadeesan U, Sundaramoorthi K, Rajeswari T, Tokala VNB, Bhattacharya S, Muthusamy S, Sankoh M, Nellore MK (2022) Comparative analysis of synthesis and characterization of silver nanoparticles extracted using leaf, flower, and bark of hibiscus rosasinensis and examine its antimicrobicidal activity. J Nanomater 8123854

    Google Scholar 

  56. Di Petrillo A, Orr G, Fais A, Fantini MC (2022) Quercetin and its derivates as antiviral potentials: a comprehensive review. Phytother Res 36(1):266–278

    Article  PubMed  Google Scholar 

  57. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5(10):439–445

    Article  CAS  PubMed  Google Scholar 

  58. Pradhan SP, Swain S, Sa N, Pilla SN, Behera A, Sahu PK, Si SC (2022) Photocatalysis of environmental organic pollutants and antioxidant activity of flavonoid conjugated gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 282:121699

    Article  CAS  PubMed  Google Scholar 

  59. Raghavan BS, Kondath S, Anantanarayanan R, Rajaram R (2015) Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochemi 50(11):1966–1976

    Article  Google Scholar 

  60. Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442

    Article  CAS  PubMed  Google Scholar 

  61. Randhir R, Lin YT, Shetty K, Lin YT (2004) Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr 13(3):295–307

    CAS  PubMed  Google Scholar 

  62. Rauf A, Shariati MA, Imran M, Bashir K, Khan SA, Mitra S, Zengin G (2022) Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. Environ Sci Pollut Res 29:31025–31041

    Article  CAS  Google Scholar 

  63. Rhodes MJC (1994) Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant Mol Biol 24(1):1–20

    Article  CAS  PubMed  Google Scholar 

  64. Robles H (2014) Tannic Acid. Encyclopedia of toxicology, 3rd edn. Elsevier, Amsterdam, The Netherlands, pp 474–475

    Chapter  Google Scholar 

  65. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Google Scholar 

  66. Sahiner N, Sagbas S, Sahiner M, Silan C, Aktas N, Turk M (2016) Biocompatible and biodegradable poly (tannic acid) hydrogel with antimicrobial and antioxidant properties. Int J Biol Macromol 82:150–159

    Article  CAS  PubMed  Google Scholar 

  67. Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, Pande RA (2016) Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett 6(3):173–181

    Article  Google Scholar 

  68. Saratale RG, Saratale GD, Ahn S, Shin HS (2021) Grape pomace extracted tannin for green synthesis of silver nanoparticles: assessment of their antidiabetic, antioxidant potential and antimicrobial activity. Polymers 13(24):4355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sathishkumar P, Gu FL, Zhan Q, Palvannan T, Yusoff ARM (2018) Flavonoids mediated ‘Green’ nanomaterials: a novel nanomedicine system to treat various diseases–current trends and future perspective. Mater Lett 210:26–30

    Article  CAS  Google Scholar 

  70. Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and nanosensors application in agroecosystems. Nano Res Lett 16:136. https://doi.org/10.1186/s11671-021-03593-0

    Article  Google Scholar 

  71. Sharma G, Nim S, Alle M, Husen A, Kim JC (2022) Nanoparticle-mediated delivery of flavonoids for cancer therapy: prevention and treatment. In: Kim JC, Alle M, Husen A (eds) Smart nanomaterials in biomedical applications. Nanotechnology in the life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_3

  72. Sulaiman GM, Waheeb HM, Jabir MS, Khazaal SH, Dewir YH, Naidoo Y (2020) Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci Rep 10(1):1–16

    Article  Google Scholar 

  73. Sun D, Li N, Zhang W, Zhao Z, Mou Z, Huang D, Liu J, Wang W (2016) Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B: Biointerfaces 148:116–129

    Article  CAS  PubMed  Google Scholar 

  74. Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ (2020) Naringenin, a flavanone with antiviral and anti-inflammatory effects: a promising treatment strategy against COVID-19. Phytother Res 34(12):3137–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tzeng CW, Yen FL, Wu TH, Ko HH, Lee CW, Tzeng WS, Lin CC (2011) Enhancement of dissolution and antioxidant activity of kaempferol using a nanoparticle engineering process. J Agric Food Chem 59(9):5073–5080

    Article  CAS  PubMed  Google Scholar 

  76. Umavathi S, Subash M, Gopinath K, Alarifi S, Nicoletti M, Govindarajan M (2021) Facile synthesis and characterization of ZnO nanoparticles using Abutilon indicum leaf extract: an eco-friendly nano-drug on human microbial pathogens. J Drug Deliv Sci Technol 66:102917

    Article  CAS  Google Scholar 

  77. Wang K, Chen Z, Huang J, Huang L, Luo N, Liang X, Liang M, Xie W (2017) Naringenin prevents ischaemic stroke damage via anti-apoptotic and anti-oxidant effects. Clin Exp Pharmacol Physiol 44(8):862–871

    Article  CAS  PubMed  Google Scholar 

  78. Wang S, Zhang J, Chen M, Wang Y (2013) Delivering flavonoids into solid tumors using nanotechnologies. Expert Opin Drug Deliv 10(10):1411–1428

    Article  CAS  PubMed  Google Scholar 

  79. Windrum P, Morris TCM, Drake MB, Niederwieser D, Ruutu T (2005) Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres. Bone Marrow Transplant 36(7):601–603

    Article  CAS  PubMed  Google Scholar 

  80. Wu H, Su M, Jin H, Li X, Wang P, Chen J, Chen J (2020) Rutin-loaded silver nanoparticles with antithrombotic function. Front Bioeng Biotechnol 8:598977

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM (2008) Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm 346(1–2):160–168

    Article  CAS  PubMed  Google Scholar 

  82. Yang J, Wang Y, Gao Y, Wang Z, Yin C, Ding X, Yang E, Sun D, Wang W, Guo F (2022) Efficient sterilization system combining flavonoids and hyaluronic acid with metal organic frameworks as carrier. J Biomed Mater Res Part B Appl Biomater 110:1887–1898

    Article  CAS  Google Scholar 

  83. Yi S, Yi L, Li L, Jin F, Beiyan L, Xuedong Z, Hongkun W (2011) Antibacterial activity of quercetin on oral infectious pathogens. Afr J Microbiol Res 5(30):5358–5361

    Google Scholar 

  84. Youness AR, Kamel RA, Elkasabgy N, Shao P, Farag MA (2021) Recent advances in tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review. Molecules 26(5):1486

    Google Scholar 

  85. Zang X, Cheng M, Zhang X, Chen X (2021) Quercetin nanoformulations: a promising strategy for tumor therapy. Food Funct 12(15):6664–6681

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Chen AY, Li M, Chen C, Yao Q (2008) Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 148(1):17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao ZY, Li PJ, Xie RS, Cao XY, Su DL, Shan Y (2022) Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism. Int J Biol Macromol 214:220–229

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhittin Kulak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulak, M., Gulmez Samsa, C. (2023). Flavonoids Mediated Nanomaterials Synthesis, Characterization, and Their Applications. In: Husen, A. (eds) Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0927-8_3

Download citation

Publish with us

Policies and ethics