Skip to main content

Demand-Side Management and Compensation Using Electric Spring Considering Electric Vehicle as a Critical Load

  • Conference paper
  • First Online:
Intelligent Solutions for Smart Grids and Smart Cities (IPECS 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1022))

  • 234 Accesses

Abstract

Electric Spring (ES) offers voltage and power reliability in a grid powered by weakly regulated/standalone distributed energy sources. Electric vehicle connected to an intermittent renewable power supply needs reliable charging potential across the system for efficient charging. The prevailing distribution system must be made capable of handling the extra load caused by the immense number of EVs. In a poorly regulated grid, the electric spring has been recommended as a demand-side management strategy to regulate voltage and power. Using electric spring, this paper proposes to support the voltage level of a typical distribution network with a high electric vehicle penetration. In addition to voltage support, the proposed electric spring embedded with non-critical loads will act like a smart load capable of demand-side management with reactive and harmonic compensation. The Electric spring will ensure continuous supply across the critical loads in case of any intermittency occurring while using green power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shu Yuen H, Chi Kwan L, Wu FF (2012) Electric springs a new smart grid technology. IEEE Trans. Smart Grid 3(3): 1552–1561

    Google Scholar 

  2. Lee C-K, Liu H, Tan S-C, Chaudhuri B, Yuen S (Ron) Hui (2020) Electric Spring and Smart load: Technology, System-level Impact and Opportunities. In IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: https://doi.org/10.1109/JESTPE.2020.3004164

  3. Soni J, Panda SK (2015) Electric spring for voltage and power stability and power factor correction. In: Presented at the 9th IEEE International Conference on Power Electronics-ECCE Asia, Jun 1–5, Korea

    Google Scholar 

  4. Sen B, Kailin R, Sharma R, Soni J, Panda SK (2016) Performance evaluation of electric spring: effect of load variation on voltage regulation. In: Presented at the IEEE International Conference on Sustainable Energy Technologies (ICSET)

    Google Scholar 

  5. Tayade AM, Dhote VP, Thosar AG (2018) Demand-side management and voltage regulation in microgrid using electric spring. In: Presented at the International Conference on Emerging Trends and Innovations in Engineering and Technological Research (ICETIETR)

    Google Scholar 

  6. Sen B, Kanakesh VK, Soni J, Rodríguez-Gallegos CD, Panda SK (2018) Effect of Line Impedance on Electric Spring Control. In: presented at IEEE International Conference on Industrial Technology (ICIT)

    Google Scholar 

  7. Wu T, Xu X, Chen L (2017) Frequency control in microgrids using electric springs. In: Presented at the International Electrical and Energy Conference (CIEEC2017) Beijing China

    Google Scholar 

  8. Yang Y, Tan S-C, Hui S-Y (2016) Voltage and frequency control of electric spring based smart loads. In: Presented at the IEEE Applied Power Electronics Conference and Exposition (APEC)

    Google Scholar 

  9. Sreeram K (2018) Modified electric spring for improved power quality in power grids. In: Presented at International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)

    Google Scholar 

  10. Abhinandh BG, Preetha PK, Asha CA (2019) Solar integrated electric spring for hospital ICU. In: Presented at the Innovations in Power and Advanced Computing Technologies (i-PACT)

    Google Scholar 

  11. Nair MG, Raveendran V, Nair MG Power factor corrected level-1 DC public green-charging infrastructure to promote emobility in India. IET Power Electron 13 (2): 221–232

    Google Scholar 

  12. Nair MG, Raveendran V, Kanaran S, Shanthisree S, Nair M.G. (2019) Vehicle-to-grid ancillary services using solar powered electric vehicle charging stations. In: Proceedings of the 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2019, pp. 1270–1274

    Google Scholar 

  13. Karuppasamy I, Bhargav A, Trivikram A, Kavya PS, Mounika G, Vivek N, Manjula G. Nair (2012) STATCOM interface for renewable energy sources with power quality improvement. Elsevier-AASRI Proc. 2: 69–74

    Google Scholar 

  14. Akhil AG, Harisankar S, Jishnu K, Asha CA, Preetha PK (2021) Coupled wireless charging system for electric vehicles. In: Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, 2021, pp. 475–479

    Google Scholar 

  15. Sreeram K, Preetha PK, Poornachandran (2019) Electric vehicle scenario in india: roadmap, challenges and opportunities. In: Proceedings of 2019 3rd IEEE international conference on electrical, computer and communication technologies, ICECCT 2019

    Google Scholar 

  16. Javaid MS, Sabir A, Abido MA, Bouchekara HREH (2019) Electric Spring controller design for distribution network loaded by Electric vehicles. In: Presented at the IET Energy Systems Integration 2019

    Google Scholar 

  17. Zhang S, Qiu D (2016) Study on the characteristics of electric spring with nonlinear load. In: Presented at the IEEE 8th International Power Electronics and Motion Control Conference, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K Preetha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mathew, R., Mooppan, R., Preetha, P. (2023). Demand-Side Management and Compensation Using Electric Spring Considering Electric Vehicle as a Critical Load. In: Siano, P., Williamson, S., Beevi, S. (eds) Intelligent Solutions for Smart Grids and Smart Cities. IPECS 2022. Lecture Notes in Electrical Engineering, vol 1022. Springer, Singapore. https://doi.org/10.1007/978-981-99-0915-5_9

Download citation

Publish with us

Policies and ethics