Skip to main content

Generalized Linear Spectral Models for Locally Stationary Processes

  • 254 Accesses

Abstract

A class of parametric models for locally stationary processes is introduced. The class depends on a power parameter that applies to the time-varying spectrum so that it can be locally represented by a (finite low dimensional) Fourier polynomial. The coefficients of the polynomial have an interpretation as time-varying autocovariances, whose dynamics are determined by a linear combination of smooth transition functions, depending on some static parameters. Frequency domain estimation is based on the generalized Whittle likelihood and the pre-periodogram, while model selection is performed through information criteria. Change points are identified via a sequence of score tests. Consistency and asymptotic normality are proved for the parametric estimators considered in the paper, under weak assumptions on the time-varying parameters.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adak, S. (1998). Time-dependent spectral analysis of nonstationary time series. Journal of the American Statistical Association 93 1488–1501.

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Amado, C. and Teräsvirta, T. (2013). Modelling volatility by variance decomposition. Journal of Econometrics 175 142–153.

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Barndorff-Nielsen, O. and Schou, G. (1973). On the parametrization of autoregressive models by partial autocorrelations. Journal of Multivariate Analysis 3 408–419.

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series. Biometrika 60 217–226.

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Bogert, B. P., Healy, M. J. R. and Tukey, J. W. (1963). The frequency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe cracking. Proceedings of the Symposium on Time Series Analysis, Wiley, New York. Chap 15, 209–243.

    Google Scholar 

  6. Box, G. E. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B 26 211–243.

    MathSciNet  MATH  Google Scholar 

  7. Brockwell, P. and Davis, R. (1991). Time Series: Theory and Methods. Springer Series in Statistics, Springer.

    Google Scholar 

  8. Cressie, N. (1993). Statistics for Spatial Data. Wiley Series in Probability and Statistics, Wiley.

    Google Scholar 

  9. Dahlhaus, R. (1996). Maximum likelihood estimation and model selection for locally stationary processes. Journal of Nonparametric Statistics 6 171–191.

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Dahlhaus, R. (1997). Fitting Time Series Models to Nonstationary Processes. The Annals of Statistics 25 1–37.

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Dahlhaus, R. (2000). A likelihood approximation for locally stationary processes. The Annals of Statistics 28 1762–1794.

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Dahlhaus, R. (2012). Locally stationary processes. 351–408.

    Google Scholar 

  13. Dahlhaus, R. and Polonik, W. (2006). Nonparametric quasi-maximum likelihood estimation for gaussian locally stationary processes. Ann Statist 34 2790–2824.

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Dahlhaus, R. and Polonik, W. (2009). Empirical spectral processes for locally stationary time series. Bernoulli 15 1–39.

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Dahlhaus, R. and Subba-Rao, S. (2006). Statistical inference for time-varying ARCH processes. The Annals of Statistics 34 1075–1114.

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2006). Structural break estimation for nonstationary time series models. Journal of the American Statistical Association 101 223–239.

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Dette, H., Preuss, P. and Vetter, M. (2011). A measure of stationarity in locally stationary processes with applications to testing. Journal of the American Statistical Association 106 1113–1124.

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Durbin, J. (1960). The fitting of time-series models. Revue de l’Institut International de Statistique 28 233–244.

    CrossRef  MATH  Google Scholar 

  19. van de Geer, S. (1993). Hellinger-consistency of certain nonparametric maximum likelihood estimators. The Annals of Statistics 21 14–44.

    MathSciNet  MATH  Google Scholar 

  20. van de Geer, S. (2000). Empirical Processes in M-Estimation. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

    Google Scholar 

  21. González, A. and Teräsvirta, T. (2008). Modelling autoregressive processes with a shifting mean. Studies in Nonlinear Dynamics & Econometrics 12.

    Google Scholar 

  22. Gould, H. W. (1974). Coefficient identities for powers of taylor and dirichlet series. The American Mathematical Monthly 81 3–14.

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Grenander, U. and Szegö, G. (1958). Toeplitz forms and their applications. Univ of California Press.

    Google Scholar 

  24. Guo, D. M. O. H.W. and von Sachs, R. (2003). Smoothing spline anova for time-dependent spectral analysis. Journal of the American Statistical Association 98 643–652.

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Krampe, J., Kreiss, J. P. and Paparoditis, E. (2018). Estimated Wold Representation and Spectral Density Driven Bootstrap for Time Series. Journal of the Royal Statistical Society, Series B 80 703–726.

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Kreiss, J.-P. and Paparoditis, E. (2015). Bootstrapping locally stationary processes. Journal of the Royal Statistical Society Series B 77 267–290.

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Levinson, N. (1946). The Wiener (root mean square) error criterion in filter design and prediction. Studies in Applied Mathematics 25 261–278.

    MathSciNet  Google Scholar 

  28. Liu, Y., Xue, Y. and Taniguchi, M. (2020). Robust linear interpolation and extrapolation of stationary time series in \(L^p\). Journal of Time Series Analysis 41 229–248.

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Taniguchi, M. and Ombao, H. (2021). Statistical inference for local Granger causality. arXiv: arxiv.org/abs/2103.00209.

  30. Monahan, J. (1984). A note enforcing stationarity in autoregressive-moving average models. Biometrika 71 403–404.

    CrossRef  MathSciNet  Google Scholar 

  31. Nason, G. P. (2013). A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. Journal of the Royal Statistical Society Series B 75 879–904.

    CrossRef  MathSciNet  MATH  Google Scholar 

  32. Nason, G. P., von Sachs, R. and Kroisandt, G. (2000). Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society Series B 62 271–292.

    CrossRef  MathSciNet  Google Scholar 

  33. Neumann, M. H. and von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and applications to adaptive estimation of evolutionary spectra. The Annals of Statistics 25 38–76.

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. Ombao, H. C., Raz, J. A., von Sachs, R. and Malow, B. A. (2001). Automatic statistical analysis of bivariate nonstationary time series. Journal of the American Statistical Association 96 543–560.

    CrossRef  MathSciNet  MATH  Google Scholar 

  35. Ombao, H. C., Von Sachs, R. and Guo, W. (2005). Slex analysis of multivariate nonstationary time series. Journal of the American Statistical Association 100 519–531.

    CrossRef  MathSciNet  MATH  Google Scholar 

  36. Pourahmadi, M. (1984). Taylor expansion of and some applications. The American Mathematical Monthly 91 303–307.

    MathSciNet  MATH  Google Scholar 

  37. Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes. 204–237. .

    Google Scholar 

  38. Proietti, T. and Luati, A. (2015). The generalised autocovariance function. Journal of Econometrics 186 245–257.

    CrossRef  MathSciNet  MATH  Google Scholar 

  39. Proietti, T. and Luati, A. (2019). Generalized linear cepstral models for the spectrum of a time series. Statistica Sinica 29 1561–1583.

    MathSciNet  MATH  Google Scholar 

  40. Qin, L. and Wang, Y. (2008). Nonparametric spectral analysis with applications to seizure characterization using eeg time series. 1432–1451. .

    Google Scholar 

  41. Rosen, O., Stoffer, D. and Wood, S. (2009). Local spectral analysis via a Bayesian mixture of smoothing splines. Journal of the American Statistical Association 104 249–262.

    CrossRef  MathSciNet  MATH  Google Scholar 

  42. Rosen, O., Wood, S. and Stoffer, D. (2012). Adaptspec: Adaptive spectral estimation for nonstationary time series. Journal of the American Statistical Association 107 1575–1589.

    CrossRef  MathSciNet  MATH  Google Scholar 

  43. Sakiyama, K. and Taniguchi, M. (2003). Testing composite hypotheses for locally stationary processes. Journal of Time Series Analysis 24 483–504.

    CrossRef  MathSciNet  MATH  Google Scholar 

  44. Silverman, R. (1957). Locally stationary random processes. IRE Transactions on Information Theory 3 182–187.

    CrossRef  Google Scholar 

  45. Taniguchi, M. (1980). On estimation of the integrals of certain functions of spectral density. Journal of Applied Probability 17 73–83.

    CrossRef  MathSciNet  MATH  Google Scholar 

  46. West, M., Prado, R. and Krystal, A. D. (1999). Evaluation and comparison of eeg traces: Latent structure in nonstationary time series. Journal of the American Statistical Association 94 375–387.

    CrossRef  Google Scholar 

  47. White, H. (2006). Approximate nonlinear forecasting methods. Handbook of economic forecasting 1 459–512.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Luati .

Editor information

Editors and Affiliations

Appendices

13.6 Proofs

Proof of Theorem 13.1

The proofs of consistency and asymptotic normality of the estimator \(\hat{\theta }_n\) are based on results by [14] on the empirical spectral process

$$E_n(\phi ) = \sqrt{n}(F_n(\phi ) - F(\phi ))$$

evaluated at \(\phi = f_\theta (\cdot ,\omega )^{-1}\) and at \(\phi = \frac{\partial }{\partial \theta } f_\theta (\cdot ,\omega )^{-1} \), respectively, where

$$F(\phi ) = \int _0^1 \int _{-\pi }^\pi \phi (u,\omega )f_\theta (u,\omega )\text{ d }\omega $$

is a spectral measure and

$$F_n(\phi ) = \frac{1}{n}\sum _{t=1}^n \int _{-\pi }^\pi \phi \left( \frac{t}{n},\omega \right) J_n\left( \frac{t}{n},\omega \right) \text{ d }\omega $$

is an empirical spectral measure based on the pre-periodogram, defined in Eq. (13.17).

Under the assumptions of Theorem 13.1, almost sure consistency of \(\hat{\theta }_n\) requires the uniform convergence of \(\ell _n(\theta )\) to \(\ell (\theta )\), defined in Eqs. (13.19) and (13.20), respectively,

$$\begin{aligned} \sup _{\theta \in \Theta } |\ell _n(\theta )-\ell (\theta )|\rightarrow 0, \;\;\; n\rightarrow \infty . \end{aligned}$$

Note that ([14, Example 3.1])

$$\begin{aligned} \ell _n(\theta )-\ell (\theta ) =&\int _{0}^1\int _{-\pi }^\pi \left\{ \log f_\theta \left( u,\omega \right) + \frac{f(u,\omega )}{f_{\theta }\left( u,\omega \right) }\right\} \text{ d }\omega \\&- \frac{1}{n}\sum _{t=1}^n\int _{-\pi }^\pi \left\{ \log f_\theta \left( \frac{t}{n},\omega \right) + \frac{J_n\left( \frac{t}{n},\omega \right) }{f_{\theta }\left( \frac{t}{n},\omega \right) } \right\} \text{ d }\omega \\ =&\int _{0}^1\int _{-\pi }^\pi \frac{1}{f_{\theta }\left( u,\omega \right) }f(u,\omega ) \text{ d }\omega \\&- \frac{1}{n}\sum _{t=1}^n\int _{-\pi }^\pi \frac{1}{f_{\theta }\left( \frac{t}{n},\omega \right) } J_n\left( \frac{t}{n},\omega \right) \text{ d }\omega + R_{\log }(f_\theta ) \\&= F(1/f_\theta ) - F_n(1/f_\theta ) + R_{\log }(f_\theta ), \end{aligned}$$

where \(F,F_n\) are defined above and

$$\begin{aligned} R_{\log }(f_\theta ) = \int _{-\pi }^\pi \left[ \int _{0}^1 \log f_\theta \left( u,\omega \right) \text{ d }u - \frac{1}{n}\sum _{t=1}^n \log f_\theta \left( \frac{t}{n},\omega \right) \right] \text{ d }\omega . \end{aligned}$$
(13.25)

Hence, if \(\sup _{\theta \in \Theta }|R_{\log }(f_\theta )|\) is small, the convergence of \(\ell _n(\theta )-\ell (\theta )\) may be controlled by \(E_n(1/f_\theta )\), since, by Assumptions 13.1 and 13.2, we obtain

$$\begin{aligned} \sup _{\theta \in \Theta } |\ell _n(\theta )-\ell (\theta )| =&\sup _{\theta \in \Theta }\bigg | \frac{1}{\sqrt{n}} E_n\Big (\frac{1}{f_\theta } \Big ) + R_{\log }(f_\theta ) \bigg | \\ \le&\sup _{\theta \in \Theta }\bigg | \frac{1}{\sqrt{n}} E_n\Big (\frac{1}{f_\theta } \Big )\bigg | + \sup _{\theta \in \Theta } | R_{\log }(f_\theta )|. \end{aligned}$$

Note that by Assumptions 13.1 and 13.2, we obtain that the empirical spectral process \(E_n(1/f_\theta )\) has bounded variation in both the components of \(f_\theta (u, \omega )\), see also the discussion in [14]. Then, the uniform convergence of \(\ell _n(\theta )-\ell (\theta )\) could be easily obtained by Glivenko–Cantelli-type convergence results, see, for example, [14, Theorem 2.12], which ensures that we have

$$\begin{aligned} \sup _{\theta \in \Theta }\bigg | \frac{1}{\sqrt{n}} E_n\Big (\frac{1}{f_\theta } \Big )\bigg | \xrightarrow {P} 0. \end{aligned}$$

To show that this result is valid also in our case, it suffices to verify [15, Assumption 2.4 (c)].

First, we note that by construction the reciprocal \(1/(f_\theta (u,\omega ))\) is an element of \(\mathcal {F}_\lambda \) (when \(\lambda =-1\)) and the functions in \(\mathcal {F}_\lambda \) are not indexed by n. Moreover, the implied spectral density \(f_\theta (u,\omega )\in \mathcal {F}_\lambda \) is bounded away from zero.

Let us consider

$$\begin{aligned} f_\theta (u, \omega )^\lambda&= \sigma ^2_\lambda (u)|\beta (u, \omega )|^2 \\&= \sigma ^2_\lambda (u) \bigg ( \sum _{j=0}^{K} \beta _\lambda ^2(u, j) + 2 \sum _{k=1}^{K} \sum _{j=0}^{K-k} \beta _\lambda (u, j)\beta _\lambda (u, j+k) \cos (\omega k) \bigg ). \end{aligned}$$

By Kolmogorov’s formula ([7, Theorem 5.8.1]) we have

$$\begin{aligned} \int _{-\pi }^\pi \log f_{\theta }(u, \omega ) \textrm{d}\omega = 2\pi \lambda \log \Big ( \frac{\sigma ^2_\lambda (u)}{2\pi } \Big ). \end{aligned}$$

We define the class of functions

$$\begin{aligned} \mathcal {S}_{\lambda } = \bigg \{ \sigma ^2_\lambda (u):&[0, 1] \mapsto \mathbb {R}_+, \, \\&\text {increasing with}\, 0< L \le \inf _{u} \sigma ^2_\lambda (u) \le \sup _{u} \sigma ^2_\lambda (u) \le B < \infty , \, \lambda \in \mathbb {R} \bigg \}, \end{aligned}$$

and note that for uniformly bounded monotonic functions, the metric entropy is bounded

$$\begin{aligned} H(\eta , \mathcal {S}_\lambda , \rho _2) \le C_2 B \epsilon ^{-1}, \end{aligned}$$

for some \(\epsilon > 0\), where \(C_2\) is a constant, see [19]. Moreover, \(\exists \,\, 0< M_{\star } \le 1 \le M^{\star } < \infty \,, \, M_{\star } \le f_\theta (u,\omega ) \le M^{\star } \,\,, \forall \,\, u,\omega \,\, \text {and} \,\, f_\theta (u,\omega ) \in \mathcal {F}_\lambda \). However, we do not need the lower bound \(M_{\star }\) and then we may set \(M_{\star } = 1\).

In addition, to ensure that

$$\begin{aligned} \bigg | 1 + \sum _{k=1}^{K} \beta _\lambda (u, k)z^k \bigg | \ne 0, \, \forall 0< |z| \le 1+\delta , \, \delta >0, \, \lambda \in \mathbb {R}, \end{aligned}$$

we choose

$$\begin{aligned} \mathcal {B}_{\lambda } = \bigg \{ \boldsymbol{\beta }_\lambda (u) =&(\beta _\lambda (u, 1), \dots , \beta _\lambda (u, K))^\prime : [0, 1]^K \mapsto \mathbb {R}^K, \, \\&\sup _{u} \bigg | 1 + \sum _{k=1}^{K} \beta _\lambda (u, k)z^k \bigg | \ne 0, \, \forall 0< |z| \le 1+\delta , \, \delta >0, \, \lambda \in \mathbb {R} \bigg \}, \end{aligned}$$

such that \(\mathcal {B}_{\lambda } \in \mathcal {W}_{2}^{\alpha }\), that is, the Sobolev class of functions with \(m\in \mathbb {N}\) smoothness parameter, such that the first \(m \ge 1\) derivatives exist with finite \(L_2\)-norm, see [20]. For this class of functions, the metric entropy can be bounded by

$$\begin{aligned} H(\eta , \mathcal {B}_\lambda , \rho _2) \le A \epsilon ^{-1/m}, \end{aligned}$$

for some \(A>0\) and \(\forall \epsilon > 0\). It follows that the metric entropy of the class of the time-varying sdf is bounded by

$$\begin{aligned} H(\eta , \mathcal {F}_\lambda , \rho _2) \le A_2 B \epsilon ^{-(1+1/m)}. \end{aligned}$$

As a result, all the conditions of [13][Assumption 2.4 (c)] are easily satisfied, and hence we apply [13, Lemma A.2] to conclude that

$$\begin{aligned} \sup _{\theta \in \Theta } | R_{\log }(f_\theta )| = O\bigg ( \frac{v_{\Sigma }}{n} \bigg ), \end{aligned}$$

which implies \(\sup _{\theta \in \Theta }|R_{\log }(f_\theta )| \rightarrow 0\) as \(n \rightarrow \infty \).

Moreover, by [13, Theorem 2.6], we obtain the convergence of \(\rho _2 (1/\hat{f}_\theta - 1/\hat{f}_\theta )\) by setting \(\gamma = (1+1/m)\), so that

$$\begin{aligned} \rho _2\left( \frac{1}{\hat{f}_{\theta }}, \frac{1}{{f}_{\theta }} \right) = O_P \left( n^{- \frac{2-(1+1/m)}{4(1+1/m)}} (\log n)^{\frac{(1+1/m)-1}{2(1+1/m)}} \right) , m > 1. \end{aligned}$$

In conclusion, by compactness of \(\Theta \) and the uniqueness of \(\theta _0\) implied by Assumptions 13.3 and 13.4, we obtain the claimed convergence \(\hat{\theta }_n \rightarrow _p \theta _0\), which concludes the proof.   \(\square \)

13.7 Proof of Theorem 13.2

Before presenting the proof of Theorem 13.2, we need to check the smoothness conditions given in [9, Assumption 2.1].

First, we note that

$$\sigma ^2_\lambda (u) = \exp \{ 2 \Psi (u)^\prime \theta _\sigma \},$$

where the \((q+1)\)-vector \(\Psi (u)\) is defined as

$$\Psi (u) = (1, \Psi (u, \gamma _1, \tau _1), \dots , \Psi (u, \gamma _q, \tau _q))^\prime ,$$

with \(\Psi (u, \gamma _i, \tau _i)= [1+\exp \{ - \gamma _i(u-\tau _i) \}]^{-1}\) for \(i = 1, \dots , q\). Moreover \(\theta _\sigma = (\theta _{00}, \dots , \theta _{0q})^\prime \) and define \(\boldsymbol{\gamma }=(\gamma _1, \dots , \gamma _q)^\prime \).

Therefore, the first derivatives of \(\sigma ^2_\lambda (u)\) with respect to \(\theta _\sigma \) and \(\boldsymbol{\gamma }\) are

$$\begin{aligned} \nabla \sigma _\lambda ^2(u) = \left[ \begin{array}{c} \frac{\partial \sigma _\lambda ^2(u)}{\partial \theta _\sigma } \\ \frac{\partial \sigma _\lambda ^2(u)}{\partial \boldsymbol{\gamma }} \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \sigma _\lambda ^2(u)}{\partial \theta _\sigma } = 2\exp \{ 2 \Psi (u)^\prime \theta _\sigma \}\Psi (u), \end{aligned}$$

and

$$\begin{aligned} \frac{\partial \sigma _\lambda ^2(u)}{\partial \boldsymbol{\gamma }} = 2\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} \Big [\theta _\sigma \odot \Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u} - \boldsymbol{\tau })\Big ], \end{aligned}$$

with \(\boldsymbol{1}_{q+1}\) being a \((q+1)\)-vector of ones, \(\boldsymbol{u} = (0, u, \dots , u)^\prime \in [0, 1]^{q+1}\) and \(\boldsymbol{\tau } = (0, \tau _1, \dots , \tau _{q})^\prime \).

The second derivatives of \(\sigma ^2_\lambda (u)\) with respect to \(\theta _\sigma \) and \(\boldsymbol{\gamma }\) are

$$\begin{aligned} \nabla ^2 \sigma _\lambda ^2(u) = \left[ \begin{array}{cc} \frac{\partial ^2 \sigma _\lambda ^2(u)}{\partial \theta _\sigma \partial \theta _\sigma ^\prime } &{} \frac{\partial ^2 \sigma _\lambda ^2(u)}{\partial \theta _\sigma \partial \boldsymbol{\gamma }^\prime } \\ \frac{\partial ^2 \sigma _\lambda ^2(u)}{\partial \boldsymbol{\gamma } \partial \theta _\sigma ^\prime } &{}\frac{\partial \sigma _\lambda ^2(u)}{\partial \boldsymbol{\gamma } \partial \boldsymbol{\gamma }^\prime } \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial ^2 \sigma _\lambda ^2(u)}{\partial \theta _\sigma \partial \theta _\sigma ^\prime } = 4\exp \{ 2 \Psi (u)^\prime \theta _\sigma \}\Psi (u)\Psi (u)^\prime , \end{aligned}$$
$$\begin{aligned} \frac{\partial \sigma _\lambda ^2(u)}{\partial \boldsymbol{\gamma } \partial \boldsymbol{\gamma }^\prime } =&4\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} \\&\,\,\times \Big [\theta _\sigma \theta _\sigma ^\prime \odot \text {diag}\Big (\Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })\Big )^2 \Big ]\\&+ 2\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} \\&\,\,\times \Big [ \text {diag}\Big (\theta _\sigma \odot \Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{1}_{q+1} - 2\Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })^2 \Big ) \Big ], \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2 \sigma _\lambda ^2(u)}{\partial \theta _\sigma \partial \boldsymbol{\gamma }^\prime } =&4\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} \\&\,\,\times \Big [\Psi (u) \theta _\sigma ^\prime \odot \text {diag}\Big (\Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })\Big )^2 \Big ]\\&+ 2\exp \{ 2 \Psi (u)^\prime \theta _\sigma \}\\&\,\,\times \Big [ \text {diag}\Big (\Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })\Big ) \Big ]. \end{aligned}$$

Furthermore, we require the first and second derivatives of \(\beta _\lambda (u, \omega )\) with respect to \(\theta _\sigma \) and \( \boldsymbol{\gamma }\). However, we recall that for estimation purposes we adopt the parametrization \(\beta _\lambda (u, k)\) for \(k=1,\dots ,K\) and each \(\beta _\lambda (u, k)\) from the last iteration of the Durbin–Levinson recursion. As a result, we have \(\beta _\lambda (u, k) = \zeta _\lambda (u, k)\), where \(\zeta _\lambda (u, k)\) denotes the generalized partial autocorrelation coefficients, and we set, for \(k=1, \dots , K\),

$$\begin{aligned} \zeta _\lambda (u, k) = \frac{\exp \{2 \Psi (u)^\prime \theta _\sigma \} - 1}{\exp \{2 \Psi (u)^\prime \theta _\sigma \} + 1}. \end{aligned}$$

Thus, it suffices to derive \(\zeta _\lambda (u, k)\) with respect to \(\theta _\sigma \) and \(\boldsymbol{\gamma }\). Then we have

$$\begin{aligned} \nabla \zeta _\lambda (u, k) = \left[ \begin{array}{c} \frac{\partial \zeta _\lambda (u, k)}{\partial \theta _\sigma } \\ \frac{\partial \zeta _\lambda (u, k)}{\partial \boldsymbol{\gamma }} \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \zeta _\lambda (u, k)}{\partial \theta _\sigma } = \frac{4 \exp \{ 2 \Psi (u)^\prime \theta _\sigma \} }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^2} \Psi (u) \end{aligned}$$

and

$$\begin{aligned} \frac{\partial \zeta _\lambda (u, k)}{\partial \boldsymbol{\gamma }} = \frac{4 \exp \{ 2 \Psi (u)^\prime \theta _\sigma \} }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^2} \Big [\theta _\sigma \odot \Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u} - \boldsymbol{\tau })\Big ]. \end{aligned}$$

The second derivatives of \(\zeta _\lambda (u, k)\) with respect to \(\theta _\sigma \) and \(\boldsymbol{\gamma }\) are

$$\begin{aligned} \nabla ^2 \zeta _\lambda (u, k) = \left[ \begin{array}{cc} \frac{\partial ^2 \zeta _\lambda (u, k)}{\partial \theta _\sigma \partial \theta _\sigma ^\prime } &{} \frac{\partial ^2 \zeta _\lambda (u, k)}{\partial \theta _\sigma \partial \boldsymbol{\gamma }^\prime } \\ \frac{\partial ^2 \zeta _\lambda (u, k)}{\partial \boldsymbol{\gamma } \partial \theta _\sigma ^\prime } &{}\frac{\partial \zeta _\lambda (u, k)}{\partial \boldsymbol{\gamma } \partial \boldsymbol{\gamma }^\prime } \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} \frac{\partial ^2 \zeta _\lambda (u, k)}{\partial \theta _\sigma \partial \theta _\sigma ^\prime } = \frac{8 \exp \{ 2 \Psi (u)^\prime \theta _\sigma \} (1-\exp \{ 2 \Psi (u)^\prime \theta _\sigma \}) }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^3} \Psi (u) \Psi (u)^\prime , \end{aligned}$$
$$\begin{aligned} \frac{\partial \zeta _\lambda (u, k)}{\partial \boldsymbol{\gamma } \partial \boldsymbol{\gamma }^\prime } =&\frac{8 \exp \{ 2 \Psi (u)^\prime \theta _\sigma \} (1-\exp \{ 2 \Psi (u)^\prime \theta _\sigma \}) }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^3}\\&\times \Big [\Psi (u) \Psi (u)^\prime \odot \text {diag}\Big (\Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })\Big )^2 \Big ]\\&+ \frac{4 \exp \{ 2 \Psi (u)^\prime \theta _\sigma \} }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^2}\\&\times \Big [ \text {diag}\Big (\theta _\sigma \odot \Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{1}_{q+1} - 2\Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })^2 \Big ) \Big ] , \end{aligned}$$

and finally

$$\begin{aligned} \frac{\partial ^2 \zeta _\lambda (u, k)}{\partial \theta _\sigma \partial \boldsymbol{\gamma }^\prime } =&\frac{16 \exp \{ 4 \Psi (u)^\prime \theta _\sigma \} }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^3}\\&\times \Big [\Psi (u) \theta _\sigma ^\prime \odot \text {diag}\Big (\Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })\Big ) \Big ]\\&+ \frac{4 \exp \{ 2 \Psi (u)^\prime \theta _\sigma \} }{(\exp \{ 2 \Psi (u)^\prime \theta _\sigma \} + 1)^2}\\&\times \Big [ \text {diag}\Big (\Psi (u) \odot (\boldsymbol{1}_{q+1} - \Psi (u)) \odot (\boldsymbol{u}-\boldsymbol{\tau })\Big ) \Big ] . \end{aligned}$$

Then, we conclude that all the derivatives derived above reveal that the first and second derivatives \(\nabla \sigma _\lambda ^2(u)\), \(\nabla ^2 \sigma _\lambda ^2(u)\), \(\nabla \beta _\lambda (u, \omega )\), and \(\nabla ^2 \beta _\lambda (u, \omega )\) satisfy all the smoothness conditions given in [9, Assumption 2.1]. Therefore, we can prove the asymptotic normality of our estimator in (13.18) by checking the remaining relevant conditions.

Our estimator solves the likelihood equations \(\nabla \ell _n(\hat{\theta }_n ) = 0\). Hence the mean value theorem gives

$$\begin{aligned} \nabla \ell _n(\hat{\theta }_n ) - \nabla \ell _n(\theta _0) = \nabla ^2 \ell _n(\theta _n^\star ) (\hat{\theta }_n - \theta _0), \end{aligned}$$

where \(|\theta _n^\star - \theta _0| \le |\hat{\theta }_n - \theta _0|\) and, since \(\hat{\theta }_n \in \Theta \), \(\nabla \ell _n(\hat{\theta }_n ) = 0\). As we have proved in Theorem 1, Assumptions 13.113.4 ensure the consistency of \(\hat{\theta }_n\), and thus a central limit theorem for \(\sqrt{n}(\hat{\theta }_n - \theta _0)\) could be obtained by following analogous arguments discussed in the proof of [9, Theorem 2.4]. Then, the result follows by proving that

  1. 1.

    \(\sqrt{n}\nabla \ell _n(\theta _0) \rightarrow _d N(\boldsymbol{0}, \Gamma )\),

  2. 2.

    \(\nabla ^2 \ell _n(\theta _n^\star ) - \nabla ^2 \ell _n(\theta _0) \rightarrow _p 0\), and

  3. 3.

    \(\nabla ^2 \ell _n(\theta _0) \rightarrow _p \mathbb {E}[\nabla ^2 \ell _n(\theta _0)]\) where \(\mathbb {E}[\nabla ^2 \ell _n(\theta _0)] = V\).

However, as in [9, Remark 2.6], if the model is correctly specified we have \( \Gamma =V\), where

$$\begin{aligned} V= \int _{0}^{1} \int _{-\pi }^{\pi } \nabla \log f_\theta (u, \omega ) \nabla \log f_\theta (u, \omega )^\prime \textrm{d}u \textrm{d}\omega . \end{aligned}$$

As far as convergence in distribution of the score vector in the item Assumption 13.7, we first prove the equicontinuity of \(\nabla \ell _n(\theta )\). We use similar arguments as those used in the proof of Theorem 13.1. From Eq. (13.21), one has

$$\begin{aligned} \nabla \ell (\theta ) - \nabla \ell _n(\theta )&= \int _{-\pi }^{\pi } \Big [ \int _{0}^{1} \frac{f(u, \omega )}{f^2_\theta (u, \omega )} \nabla f_\theta (u, \omega ) \textrm{d}u \\&\,\, - \frac{1}{n} \sum _{t=1}^{n} \frac{J_n(\frac{t}{n}, \omega )}{f^2_\theta (\frac{t}{n}, \omega )} \nabla f_\theta \Big (\frac{t}{n}, \omega \Big ) \Big ] \textrm{d}\omega \\&\,\, + \int _{-\pi }^{\pi } \Big [ \int _{0}^{1} \frac{\nabla f_\theta (u, \omega )}{f_\theta (u, \omega )} \textrm{d}u - \frac{1}{n} \sum _{t=1}^{n} \frac{ \nabla f_\theta (\frac{t}{n}, \omega )}{f_\theta (\frac{t}{n}, \omega )} \Big ] \textrm{d}\omega . \end{aligned}$$

By Leibniz’s rule, it is easy to see that the preceding equation is equivalent to

$$\begin{aligned} \nabla \ell (\theta ) - \nabla \ell _n(\theta )&= \frac{1}{\sqrt{n}} E_n \Big ( \nabla \frac{1}{f_\theta } \Big )\\&\, + \int _{-\pi }^{\pi } \Big [ \int _{0}^{1} \nabla \log f_\theta (u, \omega ) \textrm{d}u - \frac{1}{n} \sum _{t=1}^{n} \nabla \log f_\theta \Big (\frac{t}{n}, \omega \Big ) \Big ] \textrm{d}\omega \\&= E_n \Big ( \nabla \frac{1}{f_\theta } \Big ) \\&\,+ \nabla \int _{-\pi }^{\pi } \Big [ \int _{0}^{1} \log f_\theta (u, \omega ) \textrm{d}u - \frac{1}{n} \sum _{t=1}^{n} \log f_\theta \Big (\frac{t}{n}, \omega \Big ) \Big ] \textrm{d}\omega \\&= E_n \Big ( \nabla \frac{1}{f_\theta } \Big ) + \nabla R_{\log } (f_\theta ), \end{aligned}$$

where \(R_{\log } (f_\theta )\), defined in (13.25), was proved to be asymptotically negligible. The same bounds obtained in the proof of Theorem 13.1 can be applied to the class of functions

$$\begin{aligned} \mathcal {F}^\nabla _\lambda = \Big \{ \nabla f_{\theta }(u, \, \cdot \,), u \in [0, 1], \theta \in \Theta , \lambda \in \mathbb {R} \Big \}, \end{aligned}$$

such that, by using Assumptions 13.1 and 13.2, we get Glivenko–Cantelli-type convergence result

$$\begin{aligned} \sup _{\theta \in \theta } \bigg \Vert \frac{1}{\sqrt{n}} E_n \Big (\nabla \frac{1}{f_{\theta }}\Big ) \bigg \Vert \rightarrow _p 0, \end{aligned}$$

which implies the equicontinuity in probability of \(\nabla \ell _n(\theta ) \). Thus,

$$\begin{aligned} \sup _{\theta \in \Theta }| \nabla \ell (\theta ) - \nabla \ell _n(\theta ) | \rightarrow _p 0. \end{aligned}$$

Clearly, since by Assumptions 13.3 and 13.4 the parameter space \(\Theta \) is compact with a unique minimum at \(\theta _0\in \Theta \), we have \(\nabla \ell (\theta _0) = 0\), and so, evaluating Eq. (13.21) at the true value \(\theta _0\) is equivalent to write \(\nabla \ell _n(\theta _0)\) as an empirical process of the form

$$\begin{aligned} \sqrt{n}\nabla \ell _n(\theta _0) = E_n \Big (\nabla \frac{1}{f_{\theta _0}}\Big ). \end{aligned}$$

Note also that, under the assumption that the model is correctly specified, it holds that \(\mathbb {E}[\nabla \ell _n(\theta _0) ] = 0\), and therefore, we obtain

$$\begin{aligned} n \mathbb {V}[ \nabla \ell _n(\theta )] = n \mathbb {E} \Big [ \int _{-\pi }^{\pi } \frac{1}{n^2} \sum _{t=1}^{n} \frac{J^2_n(\frac{t}{n}, \omega )}{f^2_\theta (\frac{t}{n}, \omega )} \nabla \log f_\theta \Big (\frac{t}{n}, \omega \Big ) \nabla \log f_\theta \Big (\frac{t}{n}, \omega \Big )^\prime \textrm{d}\omega \Big ] \rightarrow \Gamma , \end{aligned}$$

since all the required Assumptions in [9, Lemma A.5] are fulfilled.

Now we focus on the item Assumption 13.7, which is satisfied if \(\nabla ^2 \ell _n(\theta )\) is equicontinuous. From Eq. (13.22) and the results obtained in the proof of condition Assumption 13.7, one can express \(\nabla ^2 \ell _n(\theta )\) as

$$\begin{aligned} \nabla ^2 \ell _n(\theta )&= \frac{1}{\sqrt{n}} E_n \Big (\nabla ^2 \frac{1}{f_{\theta }}\Big ) + \frac{1}{n} \sum _{t=1}^{n} \int _{-\pi }^{\pi } \frac{ 1 }{f^2_\theta (\frac{t}{n}, \omega )} \nabla f_\theta \Big (\frac{t}{n}, \omega \Big ) \nabla f_\theta \Big (\frac{t}{n}, \omega \Big )^\prime \textrm{d}\omega \nonumber \\&= \frac{1}{\sqrt{n}} E_n \Big (\nabla ^2 \frac{1}{f_{\theta }}\Big ) + \frac{1}{n} \sum _{t=1}^{n} \int _{-\pi }^{\pi } \nabla \log f_\theta \Big (\frac{t}{n}, \omega \Big ) \nabla \log f_\theta \Big (\frac{t}{n}, \omega \Big )^\prime \textrm{d}\omega , \end{aligned}$$
(13.26)

where

$$\begin{aligned} \nabla ^2 f_\theta (u, \omega )^{-1} = \frac{2}{f^3_\theta (u, \omega )} \nabla f_\theta (u, \omega ) \nabla f_\theta (u, \omega )^\prime - \frac{1}{f^2_\theta (u, \omega )} \nabla ^2 f_\theta (u, \omega ). \end{aligned}$$

Therefore, by similar arguments as above, under Assumptions 13.1 and 13.2, we can show the uniform convergence

$$\begin{aligned} \sup _{\theta \in \theta } \bigg \Vert \frac{1}{\sqrt{n}} E_n \Big (\nabla ^2 \frac{1}{f_{\theta }}\Big ) \bigg \Vert \rightarrow _p 0, \end{aligned}$$

which further implies the equicontinuity in probability of \(\nabla ^2 \ell _n(\theta )\). Indeed, the second term in (13.26) converges to its expectation as \(n \rightarrow \infty \), and, hence,

$$\begin{aligned} \sup _{\theta \in \Theta }| \nabla ^2 \ell (\theta ) - \nabla ^2 \ell _n(\theta ) | \rightarrow _p 0. \end{aligned}$$

The proof of the item Assumption 13.7 follows directly, since, under the maintained Assumptions, Theorem 13.1 implies that the second term of Eq. (13.26) tends to V in probability for \(\theta \rightarrow \theta _0\). To conclude, all the relevant conditions stated in [9, Theorem 2.4] are fulfilled and then the asymptotic normality follows, see also [11, Theorem 3.1].   \(\square \)

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proietti, T., Luati, A., D’Innocenzo, E. (2023). Generalized Linear Spectral Models for Locally Stationary Processes. In: Liu, Y., Hirukawa, J., Kakizawa, Y. (eds) Research Papers in Statistical Inference for Time Series and Related Models. Springer, Singapore. https://doi.org/10.1007/978-981-99-0803-5_13

Download citation