Skip to main content

Vibrational Spectra of Polyatomic Molecules

  • Chapter
  • First Online:
Fundamentals of Molecular Spectroscopy
  • 515 Accesses

Abstract

The idea of normal modes has been introduced to solve the problems related to vibrational spectra of polyatomic molecules both from classical and from quantum mechanical points of view. Selection rules for Raman and infrared spectra have been determined and extensive discussions on the vibrational spectra of symmetric and asymmetric linear triatomic molecules are presented. The idea of Wilson G matrix has been introduced to solve the vibrational problems. The ideas of internal coordinates, symmetry coordinates and s-vectors have also been introduced. Formulas of s-vectors have been derived for stretching, bending, wagging and torsional vibrations. Vibrational problem is solved for nonlinear triatomic molecule by Wilson GF matrix method. Besides these, Fourier Transform spectroscopy and its fundamental basis have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Suggested Reading

  1. E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (The Theory of Infrared and Raman Spectra) (McGraw Hill Book Company, New York. 1955)

    Google Scholar 

  2. L.A. Woodward, Introduction to the Theory of Molecular Vibrational Spectroscopy (Clarendan Press, Oxford, 1972)

    Google Scholar 

  3. G.M. Barrow, Introduction to Molecular spectroscopy (McGraw Hill Book company Inc., New York, 1962)

    Google Scholar 

  4. J.M. Hollas, Modern Spectroscopy, 4th edn. (Wiley, Chichester, London, 1986)

    Google Scholar 

  5. W.D. Perkins, Fourier transform infrared spectroscopy. J. Chem. Educ. 63 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabal Kumar Mallick .

Appendices

Appendix

s-Vectors for Torsional Vibrations

Analytically, the dihedral (torsion) angle τ (see Fig. 5.8) can be defined as

$$ \cos \tau \, = \,\frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin \phi_{2} \sin \phi_{3} }} $$
(5.137)

where \(\frac{{(\vec{e}_{12} \times \vec{e}_{23} )}}{{\sin \phi_{2} }}\) and \(\frac{{(\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin \phi_{3} }}\) are the unit vectors perpendicular to the planes 1, 2, 3 and 2, 3, 4, respectively. By differentiation of Eq. (5.137), small variation of τ is obtained.

$$\begin{aligned} - \sin \tau \Delta \tau & = \frac{{(\Delta \vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }}\, + \frac{{(\vec{e}_{{12}} \times \Delta \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }} \\ & \quad + \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\Delta \vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }} \\ & \quad + \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \Delta \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }} \\ & \quad - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }}\left[ {\frac{{\cos \phi _{2} \,\Delta \phi _{2} }}{{\sin \phi _{2} }}\, + \,\frac{{\cos \phi _{3} \,\Delta \phi _{3} }}{{\sin \phi _{3} }}\,} \right] \\ & \quad = T_{1} \, + \,T_{2} \, + \,T_{3} \, + \,T_{4} \, + \,T_{5} \, + \,T{}_{6} \\ \end{aligned}$$
(5.138)

where

$$ \Delta \tau \, = \,\sum\limits_{\alpha = 1}^{4} {\vec{s}_{t\alpha } \cdot \vec{\rho }_{\alpha } } \,\,\, $$
(5.138a)

In deriving the expressions for the \(\vec{s}\,\,\,\) vectors, the terms (Tis, i = 1–6) are needed to be determined.

$$\begin{aligned} T_{1} & = \frac{{(\Delta \vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }} \\ & = \frac{1}{{\sin \phi _{2} \sin \phi _{3} }}\left\{ {\frac{{r_{{12}} \Delta \vec{r}_{{12}} - \,(\Delta r_{{12}} )\vec{r}_{{12}} }}{{r_{{12}}^{2} }} \times \vec{e}_{{23}} } \right\} \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} ),\,\,\,\,{\text{from}}\,\,\,(5.67) \\ & = \frac{1}{{r_{{12}} \sin \phi _{2} \sin \phi _{3} }}\,[\{ (\vec{\rho }_{{2\,\,}} - \vec{\rho }_{1} ) \\ & - \{ \vec{e}_{{12}} \cdot (\vec{\rho }_{{2\,}} - \vec{\rho }_{1} )\} \,\vec{e}_{{12}} \} \times \vec{e}_{{23}} ] \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} ),\,\,\,\,\,{\text{from}}\,\,\,(5.69)\,\,\,{\text{and}}\,\,\,(5.71)\, \\ & = \frac{1}{{r_{{12}} \sin \phi _{2} \sin \phi _{3} }}\left[ \begin{gathered} \{ - \vec{\rho }_{1} \times \vec{e}_{{23}} \, + \,(\vec{e}_{{12}} \cdot \vec{\rho }_{1} )(\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \hfill \\ + \{ \vec{\rho }_{2} \times \vec{e}_{{23}} \, - \,(\vec{e}_{{12}} \cdot \vec{\rho }_{2} )(\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \hfill \\ \end{gathered} \right] \\ & = \frac{1}{{r_{{12}} \sin \phi _{2} \sin \phi _{3} }}\left[ \begin{gathered} \vec{\rho }_{1} \cdot \,\{ \, - \,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \hfill \\ + \vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ + \,\vec{\rho }_{2} \cdot \,\{ \,\,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \hfill \\ - \vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ \end{gathered} \right] \\ \end{aligned}$$
(5.139a)

Similarly, the next three terms of T2, T3 and T4 can be determined as

$$T_{2} \, = \,\frac{1}{{r_{{23}} \sin \phi _{2} \sin \phi _{3} }}\,\,\,\,\left[ \begin{gathered} \vec{\rho }_{2} \cdot \,\{ \,\,\vec{e}_{{12}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \hfill \\ + \vec{e}_{{23}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ + \,\vec{\rho }_{3} \cdot \,\{ \, - \,\vec{e}_{{12}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \hfill \\ - \vec{e}_{{23}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ \end{gathered} \right]$$
(5.139b)
$$T_{3} \, = \,\frac{1}{{r_{{23}} \sin \phi _{2} \sin \phi _{3} }}\,\,\,\,\left[ \begin{gathered} \vec{\rho }_{2} \cdot \,\{ \,(\,\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \vec{e}_{{34}} \hfill \\ + \vec{e}_{{23}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ + \vec{\rho }_{3} \cdot \,\{ \, - (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \vec{e}_{{34}} \hfill \\ - \vec{e}_{{23}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ \end{gathered} \right]$$
(5.139c)
$$T_{4} \, = \,\frac{1}{{r_{{34}} \sin \phi _{2} \sin \phi _{3} }}\,\,\,\,\left[ \begin{gathered} \vec{\rho }_{3} \cdot \,\{ - \,(\,\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \vec{e}_{{23}} \, + \,\, \hfill \\ + \vec{e}_{{34}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ + \,\vec{\rho }_{4} \cdot \,\{ \,(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \vec{e}_{{23}} \hfill \\ - \vec{e}_{{34}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \hfill \\ \end{gathered} \right]$$
(5.139d)

T5 and T6 may be determined in the following manner.

$$\begin{aligned} T_{5} & = - \,\frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }}\,\,\,\frac{{\cos \phi _{2} \,\Delta \phi _{2} }}{{\sin \phi _{2} }}\, \\ & = - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin ^{2} \phi _{2} \sin \phi _{3} }}\cos \phi _{2} \,\,\left[ \begin{gathered} \,\frac{{ - \cos \phi _{2} \,\vec{e}_{{12}} \, - \,\vec{e}_{{23}} }}{{r_{{12}} \sin \phi _{2} }} \cdot \vec{\rho }_{1} \hfill \\ + \frac{{\cos \phi _{2} \,\vec{e}_{{23}} \, + \,\vec{e}_{{12}} }}{{r_{{23}} \sin \phi _{2} }} \cdot \vec{\rho }_{3} \, \hfill \\ + \frac{\begin{gathered} (r_{{12}} - r_{{23}} \cos \phi _{2} )( - \vec{e}_{{12}} ) \hfill \\ + \,(r_{{23}} - r_{{12}} \cos \phi _{2} )\vec{e}_{{23}} \hfill \\ \end{gathered} }{{r_{{12}} r_{{23}} \sin \phi _{2} }} \cdot \vec{\rho }_{2} \hfill \\ \end{gathered} \right] \\ & \left( {{\text{from}}\,\,\,{\text{Eq}}{\text{.}}\,\,5.63} \right) \\ & = - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin ^{2} \phi _{2} \sin \phi _{3} }}\cos \phi _{2} \left[ \begin{gathered} \frac{{(\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,\vec{e}_{{12}} \, - \,\vec{e}_{{23}} }}{{r_{{12}} \sin \phi _{2} }} \cdot \vec{\rho }_{1} \hfill \\ + \frac{{ - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,\vec{e}_{{23}} \, + \,\vec{e}_{{12}} }}{{r_{{23}} \sin \phi _{2} }} \hfill \\ \end{gathered} \right. \cdot \vec{\rho }_{3} \\ & + \left. {\,\left( \begin{gathered} \frac{1}{{r_{{12}} \sin \phi _{2} }}\{ \vec{e}_{{23}} - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,\vec{e}_{{12}} \} \hfill \\ + \frac{1}{{r_{{23}} \sin \phi _{2} }}\{ - \vec{e}_{{12}} + (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,\vec{e}_{{23}} \} \, \hfill \\ \end{gathered} \right)\, \cdot \vec{\rho }_{2} } \right] \\ & = - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin ^{2} \phi _{2} \sin \phi _{3} }}\cos \phi _{2} \,\,\,\left[ \begin{gathered} \frac{{\vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\,\,}}{{r_{{12}} \sin \phi _{2} }} \cdot \vec{\rho }_{1} \hfill \\ - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \,\vec{e}_{{23}} \,}}{{r_{{23}} \sin \phi _{2} }} \hfill \\ \end{gathered} \right. \cdot \vec{\rho }_{3} \\ & + \,\left. {\,\left( { - \frac{{\vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )}}{{r_{{12}} \sin \phi _{2} }}\,\, + \,\,\frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \,\vec{e}_{{23}} }}{{r_{{23}} \sin \phi _{2} }}\,} \right) \cdot \vec{\rho }_{2} } \right] \\ \end{aligned}$$
(5.140a)

Similarly, it can be shown that

$$ \begin{aligned} T_{6\,} & = - \frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin \phi_{2} \sin^{2} \phi_{3} }}\cos \phi_{3} \left[ \begin{gathered} \frac{{\vec{e}_{23} \times (\vec{e}_{23} \times \vec{e}_{34} )}}{{r_{23} \sin \phi_{3} }} \cdot \vec{\rho }_{2} \hfill \\ - \frac{{(\vec{e}_{23} \times \vec{e}_{34} ) \times \,\vec{e}_{34} \,}}{{r_{34} \sin \phi_{3} }} \hfill \\ \end{gathered} \right. \cdot \vec{\rho }_{4} \\ & + \,\left. {\,\left( { - \frac{{\vec{e}_{23} \times (\vec{e}_{23} \times \vec{e}_{34} )\,\,}}{{r_{23} \sin \phi_{3} }}\,\, + \,\,\frac{{(\vec{e}_{23} \times \vec{e}_{34} ) \times \,\vec{e}_{34} \,}}{{r_{34} \sin \phi_{3} }}} \right) \cdot \vec{\rho }_{3} } \right] \\ \end{aligned} $$
(5.140b)

The \(\vec{s}_{t1}\) vector, which is the scalar product multiplier of \(\vec{\rho }_{1}\) (5.138a), is found to have contributions only from the terms T1 and T5. The contributions of these terms are.

$$\begin{aligned} & \frac{{\{ \, - \,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\, + \,\,\vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} }}{{r_{{12}} \sin \phi _{2} \sin \phi _{3} }} \\ & - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\cos \phi _{2} \,\{ \vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \\ & = \frac{1}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,[\,\{ \, - \,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} ) \\ & + \,\,\vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & + (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )^{2} \vec{e}_{{12}} - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\vec{e}_{{23}} \} \,], \\ & [{\text{since}}\,\,\,\,\cos \phi _{2} = \, - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,\,{\text{and}}\,\,\,\sin ^{2} \phi _{2} \, = \,\,\,(\vec{e}_{{12}} \, \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} )\,] \\ & = \,\frac{1}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,[\,\{ \, - \,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\, + \,\,\vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & + (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ (1 - (\vec{e}_{{12}} \times \vec{e}_{{23}} )^{2} )\vec{e}_{{12}} - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\vec{e}_{{23}} \} \,] \\ & [{\text{since}}\,\,\,\cos ^{2} \phi _{2} \,\, = \,\,\,\left\{ { - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,} \right\}^{2} \, = \,1 - \sin ^{2} \phi _{2} = 1 - (\vec{e}_{{12}} \times \vec{e}_{{23}} )^{2} ] \\ & = \frac{1}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,[\,\{ \, - \,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,\} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & + (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ (\vec{e}_{{12}} - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\vec{e}_{{23}} \} \,]\, \\ & = \frac{1}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,[\,\{ \, - \,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,\} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & + (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ \vec{e}_{{23}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} \} \,] \\ & = \frac{{\vec{e}_{{23}} \times }}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}[ - \,(\vec{e}_{{23}} \times \vec{e}_{{34}} )\,(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} )\, \\ & + (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} )\} ]\, \\ & = \frac{{\vec{e}_{{23}} \times }}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}[(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} ] \\ & = \frac{{\vec{e}_{{23}} \cdot \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} }}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & [{\text{since}}\,\,\,\vec{e}_{{23}} \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) = 0] \\ & = \frac{{\sin \tau }}{{r_{{12}} \sin ^{2} \phi _{2} }}(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & [{\text{since}}\,\,\,\,\,\sin \tau \,\, = \,\,\frac{{\vec{e}_{{23}} \cdot \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin \phi _{3} }}\} ] \\ \end{aligned}$$
(5.141)

which, from Eq. (5.138a), gives

$$ \vec{s}_{t1} = - \frac{{(\vec{e}_{12} \times \vec{e}_{23} )}}{{r_{12} \sin^{2} \phi_{2} }} $$
(5.142)

Similarly, the \(\vec{s}_{t2}\) vector is the scalar product multiplier of \(\vec{\rho }_{2}\) (5.138) and this term will get contributions from the terms T1, T2, T3, T5 and T6. First consider the contributions from the terms T3 and T6

$$\begin{aligned} & \frac{{\{ \,(\,\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \vec{e}_{{34}} \, + \,\,\vec{e}_{{23}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} }}{{r_{{23}} \sin \phi _{2} \sin \phi _{3} }} \\ & - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin ^{2} \phi _{3} }}\cos \phi _{3} \frac{{\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{23}} \sin \phi _{3} }} \\ & = \frac{{\{ \,(\,\vec{e}_{{12}} \cdot \vec{e}_{{34}} )\vec{e}_{{23}} \, - (\,\vec{e}_{{23}} \cdot \vec{e}_{{34}} )\vec{e}_{{12}} + \,\,\vec{e}_{{23}} [\vec{e}_{{12}} \cdot \{ \vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} ]}}{{r_{{23}} \sin \phi _{2} \sin \phi _{3} }} \\ & - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin ^{2} \phi _{3} }}\cos \phi _{3} \frac{{\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,\,}}{{r_{{23}} \sin \phi _{3} }} \\ & = \frac{{\{ \,(\,\vec{e}_{{12}} \cdot \vec{e}_{{34}} )\vec{e}_{{23}} \, - (\,\vec{e}_{{23}} \cdot \vec{e}_{{34}} )\vec{e}_{{12}} + \,\,\vec{e}_{{23}} [\vec{e}_{{12}} \cdot \{ \vec{e}_{{23}} (\vec{e}_{{23}} \cdot \vec{e}_{{34}} ) - \vec{e}_{{34}} \} ]}}{{r_{{23}} \sin \phi _{2} \sin \phi _{3} }} \\ & - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin ^{2} \phi _{3} }}\cos \phi _{3} \frac{{\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,\,}}{{r_{{23}} \sin \phi _{3} }} \\ & = \frac{{ - (\,\vec{e}_{{23}} \cdot \vec{e}_{{34}} )\{ \vec{e}_{{23}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} }}{{r_{{23}} \sin \phi _{2} \sin ^{3} \phi _{3} }}\sin ^{2} \phi _{3} \\ & - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin \phi _{2} \sin ^{2} \phi _{3} }}\cos \phi _{3} \frac{{\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,\,}}{{r_{{23}} \sin \phi _{3} }} \\ & = \,\frac{{\cos \phi _{3} }}{{r_{{23}} \sin \phi _{2} \sin ^{3} \phi _{3} }}[\,(\vec{e}_{{23}} \times \vec{e}_{{34}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ \vec{e}_{{23}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \\ & - (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ \vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} ], \\ & {\text{since}}\,\,\,\,\,\cos \phi _{3} = \, - (\,\vec{e}_{{23}} \cdot \vec{e}_{{34}} )\,\,\,{\text{and}}\,\,\,\sin ^{2} \phi _{3} = \,\,(\vec{e}_{{23}} \times \vec{e}_{{34}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,\, \\ & = \frac{{\cos \phi _{3} }}{{r_{{23}} \sin \phi _{2} \sin ^{3} \phi _{3} }}\vec{e}_{{23}} \times \,\,[(\vec{e}_{{23}} \times \vec{e}_{{34}} ) \cdot \,(\vec{e}_{{23}} \times \vec{e}_{{34}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & - (\vec{e}_{{23}} \times \vec{e}_{{34}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot \,(\vec{e}_{{23}} \times \vec{e}_{{34}} )] \\ & = \frac{{\cos \phi _{3} }}{{r_{{23}} \sin \phi _{2} \sin ^{3} \phi _{3} }}\vec{e}_{{23}} \times \,[(\vec{e}_{{23}} \times \vec{e}_{{34}} ) \times \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} ] \\ & = \frac{{\cos \phi _{3} (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{23}} \sin \phi _{2} \sin ^{3} \phi _{3} }}\vec{e}_{{23}} \cdot \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} , \\ & {\text{since}}\,\,\,\vec{e}_{{23}} \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\, = \,0 \\ & = \sin \tau \,\frac{{\cos \phi _{3} (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{23}} \sin ^{2} \phi _{3} }},\quad {\text{see}}\,\,\,{\text{Eq}}{\text{.}}\,\,\,(5.141) \\ \end{aligned}$$
(5.143a)

Next consider the contributions from T2 and the second term of the scalar multiplier of \(\vec{\rho }_{2}\) in Ï„5 (the first term will be considered along with T1).

$$ \begin{aligned} & \frac{{\{ \,\,\vec{e}_{12} \times (\vec{e}_{23} \times \vec{e}_{34} )\, + \,\,\vec{e}_{23} (\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )\} }}{{r_{23} \sin \phi_{2} \sin \phi_{3} }} \\ & - \frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin^{2} \phi_{2} \sin \phi_{3} }}\cos \phi_{2} \,\frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \times \,\vec{e}_{23} }}{{r_{23} \sin \phi_{2} }} \\ & = \,\,\frac{{\{ \,(\vec{e}_{12} \cdot \vec{e}_{34} )\vec{e}_{23} \, - (\vec{e}_{12} \cdot \vec{e}_{23} )\vec{e}_{34} \} \, + \,\,\vec{e}_{23} [\vec{e}_{12} \cdot \{ \vec{e}_{23} (\vec{e}_{23} \cdot \vec{e}_{34} ) - \vec{e}_{34} \} ]}}{{r_{23} \sin \phi_{2} \sin \phi_{3} }} \\ & - \frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin^{2} \phi_{2} \sin \phi_{3} }}\cos \phi_{2} \,\frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \times \,\vec{e}_{23} }}{{r_{23} \sin \phi_{2} }} \\ & = \frac{{ - (\vec{e}_{12} \cdot \vec{e}_{23} )\vec{e}_{34} \, + \,\,\vec{e}_{23} (\vec{e}_{12} \cdot \vec{e}_{23} )(\vec{e}_{23} \cdot \vec{e}_{34} )}}{{r_{23} \sin \phi_{2} \sin \phi_{3} }} \\ & - \frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin^{2} \phi_{2} \sin \phi_{3} }}\cos \phi_{2} \,\frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \times \,\vec{e}_{23} }}{{r_{23} \sin \phi_{2} }} \\ & = \, - \frac{{\cos \phi_{2} \{ \vec{e}_{23} \, \times (\vec{e}_{23} \times \vec{e}_{34} )\} }}{{r_{23} \sin^{3} \phi_{2} \sin \phi_{3} }}\sin^{2} \phi_{2} \\ & - \frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )}}{{\sin^{2} \phi_{2} \sin \phi_{3} }}\cos \phi_{2} \,\frac{{(\vec{e}_{12} \times \vec{e}_{23} ) \times \,\vec{e}_{23} }}{{r_{23} \sin \phi_{2} }} \\ & {\text{since}}\,\,\,\cos \phi_{2} = - (\vec{e}_{12} \cdot \vec{e}_{23} ) \\ & = - \frac{{\cos \phi_{2} \,\vec{e}_{23} \, \times }}{{r_{23} \sin^{3} \phi_{2} \sin \phi_{3} }}\,\{ \,(\vec{e}_{23} \times \vec{e}_{34} )(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{12} \times \vec{e}_{23} ) \\ & - (\vec{e}_{12} \times \vec{e}_{23} )(\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{23} \times \vec{e}_{34} )\} \\ & {\text{since}}\,\,\,\,\,\sin^{2} \phi_{2} = (\vec{e}_{12} \times \vec{e}_{23} ) \cdot (\vec{e}_{12} \times \vec{e}_{23} ) \\ & = \frac{{\cos \phi_{2} \,\vec{e}_{23} \, \times }}{{r_{23} \sin^{3} \phi_{2} \sin \phi_{3} }}[(\vec{e}_{12} \times \vec{e}_{23} ) \times \{ (\vec{e}_{12} \times \vec{e}_{23} ) \times (\vec{e}_{23} \times \vec{e}_{34} )\} ] \\ & = \frac{{\cos \phi_{2} (\vec{e}_{12} \times \vec{e}_{23} )\,}}{{r_{23} \sin^{3} \phi_{2} \sin \phi_{3} }}[\vec{e}_{23} \, \cdot \{ (\vec{e}_{12} \times \vec{e}_{23} ) \times (\vec{e}_{23} \times \vec{e}_{34} )\} ] \\ & = \frac{{\cos \phi_{2} (\vec{e}_{12} \times \vec{e}_{23} )\,}}{{r_{23} \sin^{2} \phi_{2} }}\sin \tau ,\quad {\text{see}}\,\,\,\,{\text{Eq}}{.}\,\,(5.141) \\ \end{aligned} $$
(5.143b)

The remaining contributions come from T1 and the first term of the scalar multiplier of \(\vec{\rho }_{2}\) in T5.

$$\begin{aligned} & \frac{{\{ \,\,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\, - \,\,\vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{12}} \sin \phi _{2} \sin \phi _{3} }} \\ & + \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{\sin ^{2} \phi _{2} \sin \phi _{3} }}\cos \phi _{2} \frac{{\vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )}}{{r_{{12}} \sin \phi _{2} }}\,\,\, \\ & = \frac{{\,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} )\, \\ & + \frac{\begin{gathered} - \vec{e}_{{12}} (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \hfill \\ - (\vec{e}_{{12}} \cdot \vec{e}_{{23}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )\{ \vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \hfill \\ \end{gathered} }{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}, \\ & {\text{since}}\,\,\,\,\,\cos \phi _{2} = - \,(\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\,\,\,\,\,and\,\,\,\,\sin ^{2} \phi _{2} = (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & = \frac{{\,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & + \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,[\,\vec{e}_{{12}} \{ \vec{e}_{{23}} \cdot \{ \vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \} \\ & - \,(\vec{e}_{{12}} \cdot \vec{e}_{{23}} )\{ \vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} ] \\ & = \frac{{\,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & + \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\vec{e}_{{23}} \times [\vec{e}_{{12}} \times \{ \vec{e}_{{12}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} ] \\ & = \frac{{\,\vec{e}_{{23}} \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\,(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & - \frac{{(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}\{ \vec{e}_{{23}} \times (\vec{e}_{{12}} \times \vec{e}_{{23}} )\} \\ & {\text{since}}\,\,\,\,\,\vec{e}_{{12}} \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) = 0 \\ & = \frac{{\,\vec{e}_{{23}} \times \,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}[(\vec{e}_{{23}} \times \vec{e}_{{34}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \\ & - (\vec{e}_{{12}} \times \vec{e}_{{23}} )(\vec{e}_{{12}} \times \vec{e}_{{23}} ) \cdot (\vec{e}_{{23}} \times \vec{e}_{{34}} )] \\ & = - \frac{{\,\vec{e}_{{23}} \times \,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}[\{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} ] \\ & = - \frac{{\,\vec{e}_{{23}} \cdot \{ (\vec{e}_{{12}} \times \vec{e}_{{23}} ) \times (\vec{e}_{{23}} \times \vec{e}_{{34}} )\} \,}}{{r_{{12}} \sin ^{3} \phi _{2} \sin \phi _{3} }}(\vec{e}_{{12}} \times \vec{e}_{{23}} ),\,\,{\text{since}}\,\,\vec{e}_{{23}} \cdot (\vec{e}_{{12}} \times \vec{e}_{{23}} ) = 0 \\ & = - \frac{{\,(\vec{e}_{{12}} \times \vec{e}_{{23}} )\,}}{{r_{{12}} \sin ^{2} \phi _{2} }}\sin \tau ,\,\,{\text{see}}\,\,{\text{Eq}}{\text{.}}\,\,(5.141) \\ \end{aligned}$$
(5.143c)

Thus substituting the terms from Eqs. (5.87, a, b and c) into the Eq. (5.82a), we get

$$ \vec{s}_{t2} = \frac{{r_{23} - r_{12} {\text{cos}} \phi_{2} }}{{r_{12} r_{23} {\text{sin}} \phi_{2} }}\frac{{\vec{e}_{12} \times \vec{e}_{23} }}{{{\text{sin}} \phi_{2} }} - \frac{{{\text{cos}} \phi_{3} }}{{r_{23} {\text{sin}} \phi_{3} }}\frac{{\vec{e}_{23} \times \vec{e}_{34} }}{{{\text{sin}} \phi_{3} }} $$
(5.144)

In a similar fashion, \(\vec{s}_{t3}\) and \(\vec{s}_{t4}\) can be determined. But without entering into the detailed calculation, the expressions for the respective vectors can be obtained by exchanging the indexes (1,4) and (2,3) of \(\vec{s}_{t2}\) and \(\vec{s}_{t1}\), respectively.

The s-vectors thus found are,

$$ \vec{s}_{t1} = - \frac{{\vec{e}_{12} \times \vec{e}_{23} }}{{r_{12} {\text{sin}}^{2} \phi_{2} }} $$
(5.145a)
$$ \vec{s}_{t2} = \frac{{r_{23} - r_{12} {\text{cos}} \phi_{2} }}{{r_{12} r_{23} {\text{sin}} \phi_{2} }}\frac{{\vec{e}_{12} \times \vec{e}_{23} }}{{{\text{sin}} \phi_{2} }} - \frac{{{\text{cos}} \phi_{3} }}{{r_{23} {\text{sin}} \phi_{3} }}\frac{{\vec{e}_{23} \times \vec{e}_{32} }}{{{\text{sin}} \phi_{3} }} $$
(5.145b)
$$ \vec{s}_{t3} = \left[ {\left( {14} \right)\left( {23} \right)} \right]\vec{s}_{t2} $$
(5.145c)
$$ \vec{s}_{t4} = \left[ {\left( {14} \right)\left( {23} \right)} \right]\vec{s}_{t1} $$
(5.145d)

where the expressions in brackets \(\left( {14} \right)\) and \(\left( {23} \right)\) indicate that the latter vectors can be obtained by permutation of the atom subscripts by 1 & 4, and 2 & 3 in the expressions for the first two vectors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, P.K. (2023). Vibrational Spectra of Polyatomic Molecules. In: Fundamentals of Molecular Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0791-5_5

Download citation

Publish with us

Policies and ethics