Skip to main content

Brownian Circuits: From Computation to Neural Networks

  • Conference paper
  • First Online:
Proceedings of Second Asian Symposium on Cellular Automata Technology (ASCAT 2023)

Abstract

Brownian circuits use the fluctuations of signals, implemented by tokens, to drive computation. They have been shown to significantly reduce the required complexity of circuits or platforms implementing these circuits, such as cellular automata. The original model of Brownian circuits eyed computation models in which operations on individual tokens are at the core. This paper discusses models in which collections of tokens are used as signals in Brownian circuits, in particular neural networks. We show how previously proposed Brownian circuit primitives can be employed to implement neural functionality, like thresholding, synchronization, and learning.

This work is supported by JST CREST Grant No. JPMJCR20C1, as well as by JSPS KAKENHI Grants No. 20H01827 and No. 20H05666, all from Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreev, A.V., Maksimenko, V.A., Pisarchik, A.N., Hramov, A.E.: Synchronization of interacted spiking neuronal networks with inhibitory coupling. Chaos, Solitons Fractals 146, 110812 (2021)

    Google Scholar 

  2. Dan, Y., Poo, M.: Spike timing-dependent plasticity of neural circuits. Neuron 44(1), 23–30 (2004)

    Article  Google Scholar 

  3. Ermentrout, G.B., Kopell, N.: Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Natl. Acad. Sci. 95(3), 1259–1264 (1998)

    Article  Google Scholar 

  4. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)

    Article  Google Scholar 

  5. Fei, L.J., Lee, J., Huang, X., Peper, F.: Effect of random fluctuations on minimizing the complexity of universal asynchronous cellular automata. Phys. D: Nonlinear Phenom. 428, 133052 (2021)

    Google Scholar 

  6. Izhikevich, E.M.: Polychronization: computation with Spikes. Neural Comput. 18(2), 245–282 (2006)

    Google Scholar 

  7. Jibiki, Y., Goto, M., Tamura, E., Cho, J., Miki, S., Ishikawa, R., Nomura, H., Srivastava, T., Lim, W., Auffret, S., Baraduc, C., Bea, H., Suzuki, Y.: Skyrmion brownian circuit implemented in continuous ferromagnetic thin film. Appl. Phys. Lett. 117(8), 082402 (2020)

    Article  Google Scholar 

  8. Lee, J., Peper, F.: On brownian cellular automata. In: Proceeding of Automata 2008, pp. 278–291. Luniver Press, UK (2008)

    Google Scholar 

  9. Lee, J., Peper, F., Cotofana, S., Naruse, M., Ohtsu, M., Kawazoe, T., Takahashi, Y., Shimokawa, T., Kish, L., Kubota, T.: Brownian circuits: designs. Int. J. Unconv. Comput. 12(5–6), 341–362 (2016)

    Google Scholar 

  10. Peper, F., Lee, J., Carmona, J., Cortadella, J., Morita, K.: Brownian circuits: fundamentals. ACM J. Emer. Technol. Comput. Syst. 9(1) (2013)

    Google Scholar 

  11. Utsumi, Y., Ito, Y., Golubev, D., Peper, F.: Computation time and thermodynamic uncertainty relation of brownian circuits (2022). arXiv:2205.10735

  12. Zhang, C., Zhang, D., Stepanyants, A.: Noise in neurons and synapses enables reliable associative memory storage in local cortical circuits. eNeuro 8(1) (2021)

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Yoshishige Suzuki from Osaka University for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Peper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inada, A., Eto, M., Isokawa, T., Utsumi, Y., Nakade, S., Peper, F. (2023). Brownian Circuits: From Computation to Neural Networks. In: Das, S., Martinez, G.J. (eds) Proceedings of Second Asian Symposium on Cellular Automata Technology. ASCAT 2023. Advances in Intelligent Systems and Computing, vol 1443. Springer, Singapore. https://doi.org/10.1007/978-981-99-0688-8_3

Download citation

Publish with us

Policies and ethics