Skip to main content

Data-Driven Adaptive Control for Spacecraft Constrained Reorientation

  • Chapter
  • First Online:
Intelligent Autonomous Control of Spacecraft with Multiple Constraints
  • 274 Accesses

Abstract

Rigid-body attitude control dates back to early aeronautics and space applications that involve attitude maneuvers of aerial vehicles or spacecraft spscitech3chaturvedi2011rigid. It is also motivated by applications of ground and underwater vehicles, and robotic systems. In recent years, with the ever-increasing demands on such engineering applications, the attitude control problem of rigid bodies has been attracting more and more attention from both academia and industrial sectors. Various attitude control methods have been presented in the literature, such as inverse optimal control spscitech3krstic1999inverse, proportional-derivative plus feed-forward control spscitech3arjun2020uniform, geometric control spscitech3lee2011geometric, disturbance observer-based control spscitech3sun2017disturbance, output feedback control spscitech3peng2018specified, etc. Although these methods can help to achieve high-performance attitude control in many cases, some underlying state constraints (as discussed later) are ignored, which may cause some safety issues or, even worse, lead to mission failure and severe economic losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As highlighted in [46], numerical computation of \(\text {adj}(\boldsymbol{\Omega })\) is not necessary for obtaining \(\boldsymbol{\Lambda }\). Actually, the elements \(\Lambda _{i}\) (\(i=1,2,3\)) of \(\boldsymbol{\Lambda }\) can be computed applying the Cramer’s rule as \(\Lambda _{i}=\text {det}(\boldsymbol{\Omega }_{N,i})\), where \(\boldsymbol{\Omega }_{N,i}\) is the matrix \(\boldsymbol{\Omega }\) with its i-th column replaced with the vector \(\boldsymbol{N}\).

References

  1. Chaturvedi NA, Sanyal AK, McClamroch NH (2011) Rigid-body attitude control. IEEE Control Systems Magazine 31(3): 30–51

    Article  MathSciNet  MATH  Google Scholar 

  2. Krstic M, Tsiotras P (1999) Inverse optimal stabilization of a rigid spacecraft. IEEE Transactions on Automatic Control 44(5): 1042–1049

    Article  MathSciNet  MATH  Google Scholar 

  3. Arjun Ram S, Akella MR (2020) Uniform exponential stability result for the rigid-body attitude tracking control problem. Journal of Guidance, Control, and Dynamics 43(1): 39–45

    Article  Google Scholar 

  4. Lee T (2011) Geometric tracking control of the attitude dynamics of a rigid body on SO(3). In: Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, pp 1200–1205

    Google Scholar 

  5. Sun L, Zheng Z (2017) Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty. IEEE Transactions on Industrial Electronics 64(10): 7994–8002

    Article  Google Scholar 

  6. Peng X, Geng Z, Sun J (2020) The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3). IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(4): 1610–1621

    Article  Google Scholar 

  7. Frazzoli E, Dahleh M, Feron E, Kornfeld R (2001) A randomized attitude slew planning algorithm for autonomous spacecraft. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Quebec, Canada, pp AIAA 2001–4155

    Google Scholar 

  8. Wie B, Lu J (1995) Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints. Journal of Guidance, Control, and Dynamics 18(6): 1372–1379

    Article  MATH  Google Scholar 

  9. Biggs JD, Colley L (2016) Geometric attitude motion planning for spacecraft with pointing and actuator constraints. Journal of Guidance, Control, and Dynamics 39(7): 1672–1677

    Article  Google Scholar 

  10. Kjellberg HC, Lightsey EG (2016) Discretized quaternion constrained attitude pathfinding. Journal of Guidance, Control, and Dynamics 39(3): 710–715

    Article  Google Scholar 

  11. Tan X, Berkane S, Dimarogonas DV (2020) Constrained attitude maneuvers on SO(3): Rotation space sampling, planning and low-level control. Automatica 112: 108659

    Article  MathSciNet  MATH  Google Scholar 

  12. McInnes CR (1994) Large angle slew maneuvers with autonomous sun vector avoidance. Journal of Guidance, Control, and Dynamics 17(4): 875–877

    Article  MATH  Google Scholar 

  13. Ramos MD, Schaub H (2018) Kinematic steering law for conically constrained torque-limited spacecraft attitude control. Journal of Guidance, Control, and Dynamics 41(9): 1990–2001

    Article  Google Scholar 

  14. Kulumani S, Lee T (2017) Constrained geometric attitude control on SO(3). International Journal of Control, Automation and Systems 15(6): 2796–2809

    Article  Google Scholar 

  15. Lee U, Mesbahi M (2014) Feedback control for spacecraft reorientation under attitude constraints via convex potentials. IEEE Transactions on Aerospace and Electronic Systems 50(4): 2578–2592

    Article  Google Scholar 

  16. Shen Q, Yue C, Goh CH, Wu B, Wang D (2018) Rigid-body attitude stabilization with attitude and angular rate constraints. Automatica 90: 157–163

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu Q, Chi B, Akella MR (2019) Anti-unwinding attitude control of spacecraft with forbidden pointing constraints. Journal of Guidance, Control, and Dynamics 42(4): 822–835

    Article  Google Scholar 

  18. Lee DY, Gupta R, Kalabić UV, Di Cairano S, Bloch AM, Cutler JW, Kolmanovsky IV (2017) Geometric mechanics based nonlinear model predictive spacecraft attitude control with reaction wheels. Journal of Guidance, Control, and Dynamics 40(2): 309–319

    Article  Google Scholar 

  19. Hu Q, Chi B, Akella MR (2019) Reduced attitude control for boresight alignment with dynamic pointing constraints. IEEE/ASME Transactions on Mechatronics 24(6): 2942–2952

    Article  Google Scholar 

  20. Dong H, Zhao X, Yang H (2020) Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints. IEEE Transactions on Control Systems Technology 29(4): 1664–1673

    Article  Google Scholar 

  21. Thakur D, Srikant S, Akella MR (2015) Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters. Journal of Guidance, Control, and Dynamics 38(1): 41–52

    Article  Google Scholar 

  22. Shao X, Hu Q, Shi Y, Jiang B (2018) Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE Transactions on Control Systems Technology 28(2): 574–582

    Article  Google Scholar 

  23. Astolfi A, Ortega R (2003) Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic control 48(4): 590–606

    Article  MathSciNet  MATH  Google Scholar 

  24. Seo D, Akella MR (2008) High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. Journal of Guidance, Control, and Dynamics 31(4): 884–891

    Article  Google Scholar 

  25. Yang S, Akella MR, Mazenc F (2017) Dynamically scaled immersion and invariance adaptive control for euler–lagrange mechanical systems. Journal of Guidance, Control, and Dynamics 40(11): 2844–2856

    Article  Google Scholar 

  26. Wen H, Yue X, Yuan J (2018) Dynamic scaling–based noncertainty-equivalent adaptive spacecraft attitude tracking control. Journal of Aerospace Engineering 31(2): 04017098

    Article  Google Scholar 

  27. Zou Y, Meng Z (2019) Immersion and invariance-based adaptive controller for quadrotor systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(11): 2288–2297

    Article  Google Scholar 

  28. Shao X, Hu Q, Shi Y (2021) Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints. IEEE Transactions on Control Systems Technology 29(4): 1405–1419

    Article  Google Scholar 

  29. Shao X, Hu Q (2021) Immersion and invariance adaptive pose control for spacecraft proximity operations under kinematic and dynamic constraints. IEEE Transactions on Aerospace and Electronic Systems 57(4): 2183–2200

    Article  Google Scholar 

  30. Jenkins BM, Annaswamy AM, Lavretsky E, Gibson TE (2018) Convergence properties of adaptive systems and the definition of exponential stability. SIAM Journal on Control and Optimization 56(4): 2463–2484

    Article  MathSciNet  MATH  Google Scholar 

  31. Chowdhary G, Johnson E (2010) Concurrent learning for convergence in adaptive control without persistency of excitation. In: Proceedings of 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, pp 3674–3679

    Google Scholar 

  32. Cho N, Shin HS, Kim Y, Tsourdos A (2017) Composite model reference adaptive control with parameter convergence under finite excitation. IEEE Transactions on Automatic Control 63(3): 811–818

    Article  MathSciNet  MATH  Google Scholar 

  33. Pan Y, Yu H (2018) Composite learning robot control with guaranteed parameter convergence. Automatica 89: 398–406

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang Q, Zhao D, Zhu Y (2016) Event-triggered \(H_{\infty }\) control for continuous-time nonlinear system via concurrent learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(7): 1071–1081

    Article  Google Scholar 

  35. Xue S, Luo B, Liu D, Yang Y (early access, 2020, Constrained event-triggered \(H_{\infty }\) control based on adaptive dynamic programming with concurrent learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, https://doi.org/10.1109/TSMC.2020.2997559

  36. Dong H, Hu Q, Akella MR, Yang H (2019) Composite adaptive attitude-tracking control with parameter convergence under finite excitation. IEEE Transactions on Control Systems Technology 28(6): 2657–2664

    Article  Google Scholar 

  37. Aranovskiy S, Bobtsov A, Ortega R, Pyrkin A (2016) Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Transactions on Automatic Control 62(7): 3546–3550

    Article  MathSciNet  MATH  Google Scholar 

  38. Zuo Z, Ru P (2014) Augmented \(\cal L\it _1\) adaptive tracking control of quad-rotor unmanned aircrafts. IEEE Transactions on Aerospace and Electronic Systems 50(4): 3090–3101

    Article  Google Scholar 

  39. Ulrich S, Saenz-Otero A, Barkana I (2016) Passivity-based adaptive control of robotic spacecraft for proximity operations under uncertainties. Journal of Guidance, Control, and Dynamics 39(6): 1444–1453

    Article  Google Scholar 

  40. Slotine JJE, Li W (1989) Composite adaptive control of robot manipulators. Automatica 25(4): 509–519

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun L, Huo W, Jiao Z (2016) Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Transactions on Industrial Electronics 64(1): 480–492

    Article  Google Scholar 

  42. Karagiannis D, Sassano M, Astolfi A (2009) Dynamic scaling and observer design with application to adaptive control. Automatica 45(12): 2883–2889

    Article  MathSciNet  MATH  Google Scholar 

  43. Boyd S, Sastry SS (1986) Necessary and sufficient conditions for parameter convergence in adaptive control. Automatica 22(6): 629–639

    Article  Google Scholar 

  44. Tao G (2003) Adaptive control design and analysis. John Wiley & Sons, Hoboken, NJ, USA

    Book  MATH  Google Scholar 

  45. Kreisselmeier G (1977) Adaptive observers with exponential rate of convergence. IEEE Transactions on Automatic Control 22(1): 2–8

    Article  MathSciNet  MATH  Google Scholar 

  46. Korotina M, Aranovskiy S, Ushirobira R, Vedyakov A (2020) On parameter tuning and convergence properties of the DREM procedure. In: Proceedings of European Control Conference, Saint Petersburg, Russia, pp 53–58

    Google Scholar 

  47. Yi B, Ortega R (2022, Conditions for convergence of dynamic regressor extension and mixing parameter estimators using lti filters. IEEE Transactions on Automatic Control, https://doi.org/10.1109/TAC.2022.3149964

    Article  Google Scholar 

  48. Akella MR, Thakur D, Mazenc F (2015) Partial Lyapunov strictification: Smooth angular velocity observers for attitude tracking control. Journal of Guidance, Control, and Dynamics 38(3): 442–451

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglei Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Q., Shao, X., Guo, L. (2023). Data-Driven Adaptive Control for Spacecraft Constrained Reorientation. In: Intelligent Autonomous Control of Spacecraft with Multiple Constraints. Springer, Singapore. https://doi.org/10.1007/978-981-99-0681-9_3

Download citation

Publish with us

Policies and ethics