Skip to main content
  • 227 Accesses

Abstract

Aerospace technology is the strategic cornerstone of national security and modern national defense construction, and it is also an important indicator to measure a country’s comprehensive strength. With the rapid development of space technology and its comprehensive benefits in politics, military and economy, many countries have increased their investment in this field, and issued a series of development strategies. With the rapid development of space technology and the increasing frequency of human space exploration, the world’s space launch activities are showing an increasing trend year by year, and space msissions are constantly developing towards diversification and unmanned autonomy. Emerging space missions, such as on-orbit servicing, formation flying, deep space exploration, etc., have received continuous attention and investment from major space powers in recent years. All these missions require the spacecraft to have high-precision and high-stability position and attitude control capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu G, Wu J, Gou Z, Zhang B (2017) High accuracy high stability and high agility pointing technology of spacecraft. Spacecraft Engineering 26(1): 91–99

    Google Scholar 

  2. Li Y, Huang H (2019) Current trends of spacecraft intelligent autonomous control. Aerospace Control and Application 45(4): 7–18

    Google Scholar 

  3. Shao X, Hu Q, Shi Y, Yi B (2022) Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints. IEEE Transactions on Control Systems Technology 30(2): 779–794

    Article  Google Scholar 

  4. Lee U, Mesbahi M (2014) Feedback control for spacecraft reorientation under attitude constraints via convex potentials. IEEE Transactions on Aerospace and Electronic Systems 50(4): 2578–2592

    Article  Google Scholar 

  5. Ayoubi MA, Hsin J (2020) Sun-avoidance slew planning with keep-out cone and actuator constraints. Journal of Spacecraft and Rockets 57(6): 1175–1185

    Article  Google Scholar 

  6. Fabinsky B (2006) A survey of ground operations tools developed to plan and validate the pointing of space telescopes and the design for wise. In: Proceedings of SPIE - The International Society for Optical Engineering, Orlando, FL, United states, pp 383–395

    Google Scholar 

  7. Hablani HB (1999) Attitude commands avoiding bright objects and maintaining communication with ground station. Journal of Guidance, Control, and Dynamics 22(6): 759–767

    Article  Google Scholar 

  8. Hu Q, Dong H, Zhang Y, Ma G (2015) Tracking control of spacecraft formation flying with collision avoidance. Aerospace Science and Technology 42: 353–364

    Article  Google Scholar 

  9. Shao X, Hu Q, Shi Y (2021) Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints. IEEE Transactions on Control Systems Technology 29(4): 1405–1419

    Article  Google Scholar 

  10. Shao X, Hu Q (2021) Immersion and invariance adaptive pose control for spacecraft proximity operations under kinematic and dynamic constraints. IEEE Transactions on Aerospace and Electronic Systems 57(4): 2183–2200

    Article  Google Scholar 

  11. Akella MR, Valdivia A, Kotamraju GR (2005) Velocity-free attitude controllers subject to actuator magnitude and rate saturations. Journal of Guidance, Control, and Dynamics 28(4): 659–666

    Article  Google Scholar 

  12. Wang X, Wu G, Xing L, Pedrycz W (2020) Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions. IEEE Systems Journal 15(3): 3881–3892

    Article  Google Scholar 

  13. Marsh H, Karpenko M, Gong Q (2016) Energy constrained shortest-time maneuvers for reaction wheel satellites. In: AIAA/AAS astrodynamics specialist conference, Long Beach, CA, United states, pp 5579–5598

    Google Scholar 

  14. Sorensen A (1993) Iso attitude maneuver strategies. NASA STI/Recon Technical Report A 95: 975–987

    Google Scholar 

  15. Singh G, Macala G, Wong E, Rasmussen R, Singh G, Macala G, Wong E, Rasmussen R (1997) A constraint monitor algorithm for the cassini spacecraft. In: Guidance, Navigation, and Control Conference, New Orleans, LA, United states, pp 272–282

    Google Scholar 

  16. Frakes JP, Henretty DA, Flatley TW, Markley F, San JK, Lightsey E (1992) Sampex science pointing with velocity avoidance. In: In: Spaceflight mechanics 1992; Proceedings of the 2nd AAS (AIAA Meeting, Colorado Springs, CO, Feb. 24-26, 1992. Pt. 2 (A93-48426 20-12), Univelt, Inc., AAS PAPER 92-182

    Google Scholar 

  17. de Angelis EL, Giulietti F, Avanzini G (2015) Single-axis pointing of underactuated spacecraft in the presence of path constraints. Journal of Guidance, Control, and Dynamics 38(1): 143–147

    Article  Google Scholar 

  18. Duan C, Hu Q, Zhang Y, Wu H (2020) Constrained single-axis path planning of underactuated spacecraft. Aerospace Science and Technology 107: 106345

    Article  Google Scholar 

  19. Spindler K (1998) New methods in on-board attitude control (aas 98-308). Spaceflight Dynamics 1998, Volume 100 Part 1, Advances in Astronautical Sciences 100: 111

    Google Scholar 

  20. Biggs JD, Colley L (2016) Geometric attitude motion planning for spacecraft with pointing and actuator constraints. Journal of Guidance, Control, and Dynamics 39(7): 1672–1677

    Article  Google Scholar 

  21. Henninger HC, Biggs JD (2018) Optimal under-actuated kinematic motion planning on the epsilon-group. Automatica 90: 185–195

    Article  MathSciNet  MATH  Google Scholar 

  22. Geng Y, Biggs JD, Li C (2021) Pose regulation via the dual unitary group: An application to spacecraft rendezvous. IEEE Transactions on Aerospace and Electronic Systems 57(6): 3734–3748

    Article  Google Scholar 

  23. Mclnnes CR (1994) Large angle slew maneuvers with autonomous sun vector avoidance. Journal of Guidance, Control, and Dynamics 17(4): 875–877

    Article  MATH  Google Scholar 

  24. Wisniewski R, Kulczycki P (2005) Slew maneuver control for spacecraft equipped with star camera and reaction wheels. Control Engineering Practice 13(3): 349–356

    Article  Google Scholar 

  25. Lee U, Mesbahi M (2017) Constrained autonomous precision landing via dual quaternions and model predictive control. Journal of Guidance, Control, and Dynamics 40(2): 292–308

    Article  Google Scholar 

  26. Shen Q, Yue C, Goh CH, Wu B, Wang D (2018) Rigid-body attitude stabilization with attitude and angular rate constraints. Automatica 90: 157–163

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu Q, Chi B, Akella MR (2019) Reduced attitude control for boresight alignment with dynamic pointing constraints. IEEE/ASME Transactions on Mechatronics 24(6): 2942–2952

    Article  Google Scholar 

  28. Dong H, Hu Q, Liu Y, Akella MR (2019) Adaptive pose tracking control for spacecraft proximity operations under motion constraints. Journal of Guidance, Control, and Dynamics 42(10): 2258–2271

    Article  Google Scholar 

  29. Hu Q, Chi B, Akella MR (2019) Anti-unwinding attitude control of spacecraft with forbidden pointing constraints. Journal of Guidance, Control, and Dynamics 42(4): 822–835

    Article  Google Scholar 

  30. Hu Q, Liu Y, Dong H, Zhang Y (2020) Saturated attitude control for rigid spacecraft under attitude constraints. Journal of Guidance, Control, and Dynamics 43(4): 790–805

    Article  Google Scholar 

  31. Hu Q, Liu Y, Zhang Y (2021) Velocity-free saturated control for spacecraft proximity operations with guaranteed safety. IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(4): 2501–2513

    Article  Google Scholar 

  32. Tegmark M (1996) An icosahedron-based method for pixelizing the celestial sphere. The Astrophysical Journal 470(2): L81

    Article  Google Scholar 

  33. Kjellberg HC, Lightsey EG (2013) Discretized constrained attitude pathfinding and control for satellites. Journal of Guidance, Control, and Dynamics 36(5): 1301–1309

    Article  Google Scholar 

  34. Kjellberg HC, Lightsey EG (2016) Discretized quaternion constrained attitude pathfinding. Journal of Guidance, Control, and Dynamics 39(3): 713–718

    Article  Google Scholar 

  35. Tanygin S (2012) Attitude parameterizations as higher-dimensional map projections. Journal of Guidance, Control, and Dynamics 35(1): 13–24

    Article  Google Scholar 

  36. Tanygin S (2015) Fast three-axis constrained attitude pathfinding and visualization using minimum distortion parameterizations. Journal of Guidance, Control, and Dynamics 38(12): 2324–2336

    Article  Google Scholar 

  37. Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12(4): 566–580

    Article  Google Scholar 

  38. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research 30(7): 846–894

    Article  MATH  Google Scholar 

  39. Feron E, Dahleh M, Frazzoli E, Kornfeld R (2012) A randomized attitude slew planning algorithm for autonomous spacecraft. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p 4155

    Google Scholar 

  40. Yershova A, LaValle SM (2004) Deterministic sampling methods for spheres and so(3). In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, IEEE, vol 4, pp 3974–3980

    Google Scholar 

  41. Zhao Z, Shang H, Wei B (2022) Tackling nonconvex collision avoidance constraints for optimal trajectory planning using saturation functions. Journal of Guidance, Control, and Dynamics 45(6): 1002–1016

    Article  Google Scholar 

  42. Boyarko G, Yakimenko O, Romano M (2011) Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object. Journal of Guidance, Control, and Dynamics 34(4): 1239–1252

    Article  Google Scholar 

  43. Leomanni M, Quartullo R, Bianchini G, Garulli A, Giannitrapani A (2022) Variable-horizon guidance for autonomous rendezvous and docking to a tumbling target. Journal of Guidance, Control, and Dynamics 45(5): 846–858

    Article  Google Scholar 

  44. Lee DY, Gupta R, Kalabić UV, Di Cairano S, Bloch AM, Cutler JW, Kolmanovsky IV (2017) Geometric mechanics based nonlinear model predictive spacecraft attitude control with reaction wheels. Journal of Guidance, Control, and Dynamics 40(2): 309–319

    Article  Google Scholar 

  45. Gupta R, Kalabic UV, Di Cairano S, Bloch AM, Kolmanovsky IV (2015) Constrained spacecraft attitude control on so(3) using fast nonlinear model predictive control. In: Proceedings of the American Control Conference, Chicago, IL, United states, pp 2980–2986

    Google Scholar 

  46. Liu X, Lu P, Pan B (2017) Survey of convex optimization for aerospace applications. Astrodynamics 1(1): 23–40

    Article  Google Scholar 

  47. Kim Y, Mesbahi M (2004) Quadratically constrained attitude control via semidefinite programming. IEEE Transactions on Automatic Control 49(5): 731–735

    Article  MathSciNet  MATH  Google Scholar 

  48. Kim Y, Mesbahi M, Singh G, Hadaegh FY (2010) On the convex parameterization of constrained spacecraft reorientation. IEEE Transactions on Aerospace and Electronic Systems 46(3): 1097–1109

    Article  Google Scholar 

  49. Sun C, Dai R (2015) Spacecraft attitude control under constrained zones via quadratically constrained quadratic programming. In: AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, United states, pp 2010–2026

    Google Scholar 

  50. Tam M, Lightsey EG (2016) Constrained spacecraft reorientation using mixed integer convex programming. Acta Astronautica 127: 31–40

    Article  Google Scholar 

  51. Kornfeld R (2003) On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, United states, p 5784

    Google Scholar 

  52. Wu C, Han X, An W, Gong J, Xu N (2022) Application of the improved grey wolf algorithm in spacecraft maneuvering path planning. International Journal of Aerospace Engineering p 8857584

    Google Scholar 

  53. Spiller D, Ansalone L, Curti F (2016) Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. Journal of Guidance, Control, and Dynamics 39(2): 312–325

    Article  Google Scholar 

  54. Spiller D, Melton RG, Curti F (2018) Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels. Aerospace Science and Technology 75: 1–12

    Article  Google Scholar 

  55. Wu C, Xu R, Zhu S, Cui P (2017) Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints. Acta Astronautica 137: 128–137

    Article  Google Scholar 

  56. Melton RG (2018) Differential evolution/particle swarm optimizer for constrained slew maneuvers. Acta Astronautica 148: 246–259

    Article  Google Scholar 

  57. Oestreich CE, Linares R, Gondhalekar R (2021) Autonomous six-degree-of-freedom spacecraft docking with rotating targets via reinforcement learning. Journal of Aerospace Information Systems 18(7): 417–428

    Article  Google Scholar 

  58. Hovell K, Ulrich S (2021) Deep reinforcement learning for spacecraft proximity operations guidance. Journal of Spacecraft and Rockets 58(2): 254–264

    Article  Google Scholar 

  59. Qu Q, Liu K, Wang W, Lü J (2022) Spacecraft proximity maneuvering and rendezvous with collision avoidance based on reinforcement learning. IEEE Transactions on Aerospace and Electronic Systems

    Google Scholar 

  60. Ma Z, Wang Y, Yang Y, Wang Z, Tang L, Ackland S (2018) Reinforcement learning-based satellite attitude stabilization method for non-cooperative target capturing. Sensors 18(12): 4331

    Article  Google Scholar 

  61. Vedant JT (2019) Reinforcement learning for spacecraft attitude control. In: 70th International Astronautical Congress, Washington, DC, United states

    Google Scholar 

  62. Elkins JG, Sood R, Rumpf C (2022) Bridging reinforcement learning and online learning for spacecraft attitude control. Journal of Aerospace Information Systems 19(1): 62–69

    Article  Google Scholar 

  63. Dong H, Zhao X, Yang H (2020) Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints. IEEE Transactions on Control Systems Technology 29(4): 1664–1673

    Article  Google Scholar 

  64. Yang H, Hu Q, Dong H, Zhao X (2021) ADP-based spacecraft attitude control under actuator misalignment and pointing constraints. IEEE Transactions on Industrial Electronics 69(9): 9342–9352

    Article  Google Scholar 

  65. Hu Q, Yang H, Dong H, Zhao X (2021) Learning-based 6-dof control for autonomous proximity operations under motion constraints. IEEE Transactions on Aerospace and Electronic Systems 57(6): 4097–4109

    Article  Google Scholar 

  66. Ioannou PA, Sun J (2012) Robust adaptive control. Courier Corporation

    Google Scholar 

  67. Egeland O, Godhavn JM (1994) Passivity-based adaptive attitude control of a rigid spacecraft. IEEE Transactions on Automatic Control 39(4): 842–846

    Article  MathSciNet  MATH  Google Scholar 

  68. Thakur D, Srikant S, Akella MR (2015) Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters. Journal of Guidance, Control, and Dynamics 38(1): 41–52

    Article  Google Scholar 

  69. Singla P, Subbarao K, Junkins JL (2006) Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. Journal of Guidance, Control, and Dynamics 29(4): 892–902

    Article  Google Scholar 

  70. Astolfi A, Ortega R (2003) Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic control 48(4): 590–606

    Article  MathSciNet  MATH  Google Scholar 

  71. Seo D, Akella MR (2008) High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design. Journal of Guidance, Control, and Dynamics 31(4): 884–891

    Article  Google Scholar 

  72. Lee KW, Singh SN (2019) Immersion-and invariance-based adaptive control of asteroid-orbiting and-hovering spacecraft. The Journal of the Astronautical Sciences 66(4): 537–553

    Article  Google Scholar 

  73. Karagiannis D, Sassano M, Astolfi A (2009) Dynamic scaling and observer design with application to adaptive control. Automatica 45(12): 2883–2889

    Article  MathSciNet  MATH  Google Scholar 

  74. Yang S, Akella MR, Mazenc F (2017) Dynamically scaled immersion and invariance adaptive control for euler–lagrange mechanical systems. Journal of Guidance, Control, and Dynamics 40(11): 2844–2856

    Article  Google Scholar 

  75. Wen H, Yue X, Yuan J (2018) Dynamic scaling–based noncertainty-equivalent adaptive spacecraft attitude tracking control. Journal of Aerospace Engineering 31(2): 04017098

    Article  Google Scholar 

  76. Xia D, Yue X (2022) Anti-unwinding immersion and invariance adaptive attitude control of rigid spacecraft with inertia uncertainties. Journal of Aerospace Engineering 35(2): 04021137

    Article  Google Scholar 

  77. Boyd S, Sastry SS (1986) Necessary and sufficient conditions for parameter convergence in adaptive control. Automatica 22(6): 629–639

    Article  Google Scholar 

  78. Chowdhary G, Johnson E (2010) Concurrent learning for convergence in adaptive control without persistency of excitation. In: Proceedings of 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, pp 3674–3679

    Google Scholar 

  79. Zhao Q, Duan G (2020) Finite-time concurrent learning adaptive control for spacecraft with inertia parameter identification. Journal of Guidance, Control, and Dynamics 43(3): 574–584

    Article  Google Scholar 

  80. Zhao Q, Duan G (2021) Concurrent learning adaptive finite-time control for spacecraft with inertia parameter identification under external disturbance. IEEE Transactions on Aerospace and Electronic Systems 57(6): 3691–3704

    Article  Google Scholar 

  81. Cho N, Shin HS, Kim Y, Tsourdos A (2017) Composite model reference adaptive control with parameter convergence under finite excitation. IEEE Transactions on Automatic Control 63(3): 811–818

    Article  MathSciNet  MATH  Google Scholar 

  82. Pan Y, Yu H (2018) Composite learning robot control with guaranteed parameter convergence. Automatica 89: 398–406

    Article  MathSciNet  MATH  Google Scholar 

  83. Dong H, Hu Q, Akella MR, Yang H (2019) Composite adaptive attitude-tracking control with parameter convergence under finite excitation. IEEE Transactions on Control Systems Technology 28(6): 2657–2664

    Article  Google Scholar 

  84. Shao X, Hu Q, Li D, Shi Y, Yi B (2022, https://doi.org/10.1109/TAES.2022.3194846) Composite adaptive control for anti-unwinding attitude maneuvers: An exponential stability result without persistent excitation. IEEE Transactions on Aerospace and Electronic Systems

  85. Doyle J, Glover K, Khargonekar P, Francis B (1988) State-space solutions to standard \(H_2\) and \(H_\infty \) control problems. In: 1988 American Control Conference, Atlanta, GA, USA, pp 1691–1696

    Chapter  Google Scholar 

  86. Liu C, Shi K, Sun Z (2019) Robust \(H_\infty \) controller design for attitude stabilization of flexible spacecraft with input constraints. Advances in Space Research 63(5): 1498–1522

    Article  Google Scholar 

  87. Chen BS, Wu CS, Jan YW (2000) Adaptive fuzzy mixed \(H_2/H_\infty \) attitude control of spacecraft. IEEE Transactions on Aerospace and Electronic Systems 36(4): 1343–1359

    Article  Google Scholar 

  88. Liu C, Ye D, Shi K, Sun Z (2017) Robust high-precision attitude control for flexible spacecraft with improved mixed \(H_2/H_\infty \) control strategy under poles assignment constraint. Acta Astronautica 136: 166–175

    Article  Google Scholar 

  89. Luo W, Chu YC, Ling KV (2005) \(H_\infty \) inverse optimal attitude-tracking control of rigid spacecraft. Journal of Guidance, Control, and Dynamics 28(3): 481–494

    Article  Google Scholar 

  90. Wang Z, Li Y (2020) Rigid spacecraft robust optimal attitude stabilization under actuator misalignments. Aerospace Science and Technology 105: 105990

    Article  Google Scholar 

  91. Pukdeboon C, Kumam P (2015) Robust optimal sliding mode control for spacecraft position and attitude maneuvers. Aerospace Science and Technology 43: 329–342

    Article  Google Scholar 

  92. Hu Q (2008) Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dynamics 52(3): 227–248

    Article  MathSciNet  MATH  Google Scholar 

  93. Lu K, Xia Y (2013) Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12): 3591–3599

    Article  MathSciNet  MATH  Google Scholar 

  94. Guo Y, Huang B, Song Sm, Li Aj, Wang Cq (2019) Robust saturated finite-time attitude control for spacecraft using integral sliding mode. Journal of Guidance, Control, and Dynamics 42(2): 440–446

    Article  Google Scholar 

  95. Wallsgrove RJ, Akella MR (2005) Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. Journal of Guidance, Control, and Dynamics 28(5): 957–963

    Article  Google Scholar 

  96. Hu Q, Li L, Friswell MI (2015) Spacecraft anti-unwinding attitude control with actuator nonlinearities and velocity limit. Journal of Guidance, Control, and Dynamics 38(10): 2042–2050

    Article  Google Scholar 

  97. Hu Q, Tan X (2017) Unified attitude control for spacecraft under velocity and control constraints. Aerospace Science and Technology 67: 257–264

    Article  Google Scholar 

  98. Han JQ (1998) Auto disturbance rejection controller and its applications. Control and Decision 13(1): 19–23

    Google Scholar 

  99. Xia Y, Zhu Z, Fu M, Wang S (2010) Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Transactions on Industrial Electronics 58(2): 647–659

    Article  Google Scholar 

  100. Gao Z (2003) Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American Control Conference, Denver, CO, United states, pp 4989–4996

    Google Scholar 

  101. Bai Y, Biggs JD, Zazzera FB, Cui N (2018) Adaptive attitude tracking with active uncertainty rejection. Journal of Guidance, Control, and Dynamics 41(2): 550–558

    Article  Google Scholar 

  102. Ohishi K, Nakao M, Ohnishi K, Miyachi K (1987) Microprocessor-controlled dc motor for load-insensitive position servo system. IEEE Transactions on Industrial Electronics (1): 44–49

    Article  Google Scholar 

  103. Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics 47(4): 932–938

    Article  Google Scholar 

  104. Sun L, Zheng Z (2017) Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty. IEEE Transactions on Industrial Electronics 64(10): 7994–8002

    Article  Google Scholar 

  105. Sun L, Huo w, Jiao Z (2018) Disturbance-observer-based robust relative pose control for spacecraft rendezvous and proximity operations under input saturation. IEEE Transactions on Aerospace and Electronic Systems 54(4): 1605–1617

    Google Scholar 

  106. Zhang J, Zhao W, Shen G, Xia Y (2020) Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(11): 6606–6613

    Article  Google Scholar 

  107. Zhu W, Zong Q, Tian B, Liu W (2022) Disturbance observer-based active vibration suppression and attitude control for flexible spacecraft. IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(2): 893–901

    Article  Google Scholar 

  108. Yan R, Wu Z (2019) Super-twisting disturbance observer-based finite-time attitude stabilization of flexible spacecraft subject to complex disturbances. Journal of Vibration and Control 25(5): 1008–1018

    Article  MathSciNet  Google Scholar 

  109. He T, Wu Z (2021) Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises. IEEE/CAA Journal of Automatica Sinica 8(9): 1576–1587

    Article  MathSciNet  Google Scholar 

  110. Guo L, Chen WH (2005) Disturbance attenuation and rejection for systems with nonlinearity via dobc approach. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 15(3): 109–125

    Article  MathSciNet  MATH  Google Scholar 

  111. Zhu Y, Guo L, Qiao J, Li W (2019) An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances. Control Engineering Practice 84: 274–283

    Article  Google Scholar 

  112. Yu X, Zhu Y, Qiao J, Guo L (2021) Antidisturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft. IEEE Transactions on Aerospace and Electronic Systems 57(5): 3393–3404

    Article  Google Scholar 

  113. Tafazoli M (2009) A study of on-orbit spacecraft failures. Acta Astronautica 64(2-3): 195–205

    Article  Google Scholar 

  114. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control 32(2): 229–252

    Article  Google Scholar 

  115. Yin S, Xiao B, Ding SX, Zhou D (2016) A review on recent development of spacecraft attitude fault tolerant control system. IEEE Transactions on Industrial Electronics 63(5): 3311–3320

    Article  Google Scholar 

  116. Cai W, Liao X, Song Y (2008) Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft. Journal of Guidance, Control, and Dynamics 31(5): 1456–1463

    Article  Google Scholar 

  117. Shen Q, Wang D, Zhu S, Poh K (2015) Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation. IEEE Transactions on Aerospace and Electronic Systems 51(3): 2390–2405

    Article  Google Scholar 

  118. Xia K, Zou Y (2019) Adaptive saturated fault-tolerant control for spacecraft rendezvous with redundancy thrusters. IEEE Transactions on Control Systems Technology 29(2): 502–513

    Article  Google Scholar 

  119. Dong H, Hu Q, Friswell MI, Ma G (2016) Dual-quaternion-based fault-tolerant control for spacecraft tracking with finite-time convergence. IEEE Transactions on Control Systems Technology 25(4): 1231–1242

    Article  Google Scholar 

  120. Hu Q, Shao X, Chen WH (2017) Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Transactions on Aerospace and Electronic Systems 54(1): 2–17

    Article  Google Scholar 

  121. Xiao Y, de Ruiter A, Ye D, Sun Z (2021) Adaptive fault-tolerant attitude tracking control for flexible spacecraft with guaranteed performance bounds. IEEE Transactions on Aerospace and Electronic Systems 58(3): 1922–1940

    Article  Google Scholar 

  122. Hu Q, Shao X, Guo L (2017) Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Transactions on Mechatronics 23(1): 331–341

    Article  Google Scholar 

  123. Shao X, Hu Q, Shi Y, Jiang B (2018) Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE Transactions on Control Systems Technology 28(2): 574–582

    Article  Google Scholar 

  124. Hu Q, Xiao B, Li B, Zhang Y (2021) Fault-Tolerant Attitude Control of Spacecraft. Elsevier

    Google Scholar 

  125. Fonod R, Henry D, Charbonnel C, Bornschlegl E, Losa D, Bennani S (2015) Robust fdi for fault-tolerant thrust allocation with application to spacecraft rendezvous. Control Engineering Practice 42: 12–27

    Article  Google Scholar 

  126. Shen Q, Yue C, Goh CH, Wang D (2018) Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Transactions on Industrial Electronics 66(5): 3763–3772

    Article  Google Scholar 

  127. Li Y, Hu Q, Shao X (2022) Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros. Chinese Journal of Aeronautics 35(7): 261–273

    Article  Google Scholar 

  128. Li B, Hu Q, Yu Y, Ma G (2017) Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Transactions on Aerospace and Electronic Systems 53(5): 2572–2582

    Article  Google Scholar 

  129. Ran D, Chen X, de Ruiter A, Xiao B (2018) Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels. Acta Astronautica 145: 501–514

    Article  Google Scholar 

  130. Hu Q, Zhang X, Niu G (2019) Observer-based fault tolerant control and experimental verification for rigid spacecraft. Aerospace Science and Technology 92: 373–386

    Article  Google Scholar 

  131. Gui H (2021) Observer-based fault-tolerant spacecraft attitude tracking using sequential lyapunov analyses. IEEE Transactions on Automatic Control 66(12): 6108–6114

    Article  MathSciNet  MATH  Google Scholar 

  132. Shen Q, Wang D, Zhu S, Poh EK (2015) Inertia-free fault-tolerant spacecraft attitude tracking using control allocation. Automatica 62: 114–121

    Article  MathSciNet  MATH  Google Scholar 

  133. Shen Q, Wang D, Zhu S, Poh EK (2016) Robust control allocation for spacecraft attitude tracking under actuator faults. IEEE Transactions on Control Systems Technology 25(3): 1068–1075

    Article  Google Scholar 

  134. Li B, Hu Q, Ma G, Yang Y (2018) Fault-tolerant attitude stabilization incorporating closed-loop control allocation under actuator failure. IEEE Transactions on Aerospace and Electronic Systems 55(4): 1989–2000

    Article  Google Scholar 

  135. Hu Q, Li B, Xiao B, Zhang Y (2021) Closed-loop based control allocation for spacecraft attitude stabilization with actuator faults. In: Control Allocation for Spacecraft Under Actuator Faults, Springer, pp 185–217

    Google Scholar 

  136. Nicotra MM, Liao-McPherson D, Burlion L, Kolmanovsky IV (2019) Spacecraft attitude control with nonconvex constraints: an explicit reference governor approach. IEEE Transactions on Automatic Control 65(8): 3677–3684

    Article  MathSciNet  MATH  Google Scholar 

  137. Dang Q, Liu K, Wei J (2022) Explicit reference governor based spacecraft attitude reorientation control with constraints and disturbances. Acta Astronautica 190: 455–464

    Article  Google Scholar 

  138. Guiggiani A, Kolmanovsky I, Patrinos P, Bemporad A (2015) Fixed-point constrained model predictive control of spacecraft attitude. In: Proceedings of the American Control Conference, Chicago, IL, United states, pp 2317–2322

    Google Scholar 

  139. Weiss A, Baldwin M, Erwin RS, Kolmanovsky I (2015) Model predictive control for spacecraft rendezvous and docking: Strategies for handling constraints and case studies. IEEE Transactions on Control Systems Technology 23(4): 1638–1647

    Article  Google Scholar 

  140. Li Q, Yuan J, Zhang B, Gao C (2017) Model predictive control for autonomous rendezvous and docking with a tumbling target. Aerospace Science and Technology 69: 700–711

    Article  Google Scholar 

  141. Tee KP, Ge SS, Tay EH (2009) Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4): 918–927

    Article  MathSciNet  MATH  Google Scholar 

  142. Bechlioulis CP, Rovithakis GA (2008) Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control 53(9): 2090–2099

    Article  MathSciNet  MATH  Google Scholar 

  143. Liu M, Shao X, Ma G (2019) Appointed-time fault-tolerant attitude tracking control of spacecraft with double-level guaranteed performance bounds. Aerospace Science and Technology 92: 337–346

    Article  Google Scholar 

  144. Yin Z, Suleman A, Luo J, Wei C (2019) Appointed-time prescribed performance attitude tracking control via double performance functions. Aerospace Science and Technology 93: 105337

    Article  Google Scholar 

  145. Wei C, Chen Q, Liu J, Yin Z, Luo J (2021) An overview of prescribed performance control and its application to spacecraft attitude system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 235(4): 435–447

    Google Scholar 

  146. Huang X, Duan G (2020) Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance. ISA Transactions 98: 161–172

    Article  Google Scholar 

  147. Bechlioulis CP, Rovithakis GA (2014) A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4): 1217–1226

    Article  MathSciNet  MATH  Google Scholar 

  148. Zhou ZG, Zhang YA, Shi XN, Zhou D (2017) Robust attitude tracking for rigid spacecraft with prescribed transient performance. International Journal of Control 90(11): 2471–2479

    Article  MathSciNet  MATH  Google Scholar 

  149. Luo J, Yin Z, Wei C, Yuan J (2018) Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking. Aerospace Science and Technology 74: 173–183

    Article  Google Scholar 

  150. Hu Y, Geng Y, Wu B, Wang D (2020) Model-free prescribed performance control for spacecraft attitude tracking. IEEE Transactions on Control Systems Technology 29(1): 165–179

    Article  Google Scholar 

  151. Yong K, Chen M, Shi Y, Wu Q (2020) Flexible performance-based robust control for a class of nonlinear systems with input saturation. Automatica 122: 109268

    Article  MathSciNet  MATH  Google Scholar 

  152. Liu F (2018) Application of artificial intelligence in spacecraft. Flight Control Detection 1(1): 16–25

    Google Scholar 

  153. Shirobokov M, Trofimov S, Ovchinnikov M (2021) Survey of machine learning techniques in spacecraft control design. Acta Astronautica 186: 87–97

    Article  Google Scholar 

  154. Hu Q, Xiao B (2012) Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation. Aerospace Science and Technology 23(1): 63–74

    Article  Google Scholar 

  155. Li D, Ma G, Li C, He W, Mei J, Ge SS (2018) Distributed attitude coordinated control of multiple spacecraft with attitude constraints. IEEE Transactions on Aerospace and Electronic Systems 54(5): 2233–2245

    Article  Google Scholar 

  156. Chen M, Tao G (2015) Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Transactions on Cybernetics 46(8): 1851–1862

    Article  Google Scholar 

  157. Liu Y, Ma G, Lyu Y, Wang P (2022) Neural network-based reinforcement learning control for combined spacecraft attitude tracking maneuvers. Neurocomputing 484: 67–78

    Article  Google Scholar 

  158. Cheng CH, Shu SL (2010) Application of ga-based neural network for attitude control of a satellite. Aerospace Science and Technology 14(4): 241–249

    Article  Google Scholar 

  159. Zhang Z, Li X, An J, Man W, Zhang G (2020) Model-free attitude control of spacecraft based on PID-guide TD3 algorithm. International Journal of Aerospace Engineering 2020

    Google Scholar 

  160. Vamvoudakis KG, Lewis FL (2010) Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46(5): 878–888

    Article  MathSciNet  MATH  Google Scholar 

  161. Liu D, Yang X, Wang D, Wei Q (2015) Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints. IEEE Transactions on Cybernetics 45(7): 1372–1385

    Article  Google Scholar 

  162. Dong H, Zhao X, Luo B (2022) Optimal tracking control for uncertain nonlinear systems with prescribed performance via critic-only adp. IEEE Transactions on Systems, Man, and Cybernetics: Systems 52(1): 561–573

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglei Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Q., Shao, X., Guo, L. (2023). Introduction. In: Intelligent Autonomous Control of Spacecraft with Multiple Constraints. Springer, Singapore. https://doi.org/10.1007/978-981-99-0681-9_1

Download citation

Publish with us

Policies and ethics