Skip to main content

Impact of Vegetation Indices on Wheat Yield Prediction Using Spatio-Temporal Modeling

  • Chapter
  • First Online:
Digital Ecosystem for Innovation in Agriculture

Part of the book series: Studies in Big Data ((SBD,volume 121))

Abstract

Precise yield prediction is necessary for any Government to design and implement agriculture-related policy. Usually, remotely sensed images are used for prediction, and it is a complex task with dependence on many parameters like weather, soil, and farm practices. The fusion of extra information can improve the prediction. Therefore, the chapter studies the impact of vegetation indices on wheat yield prediction using satellite images. The chapter uses convolutional neural network (CNN) to extract the spatial features, which are then fed into the long short-term memory (LSTM) to derive the temporal information. They are subsequently fed into a fully connected network (FCN) to predict the yield. The chapter demonstrates that adding information about vegetation indices improves yield prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aghighi, H., Azadbakht, M., Ashourloo, D., Shahrabi, H., & Radiom, S. (2018). Machine learning regression techniques for the silage maize yield prediction using time-series images of landsat 8 OLI. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4563–4577. https://doi.org/10.1109/JSTARS.2018.2823361

    Article  Google Scholar 

  • Arnon, K., Nurit, A., Rachel, T., Martha, A., Marc, L., Garik, G., Natalya, P., & Alexander, G. (2010). Use of NDVI and land surface temperature for drought assessment: merits and limitations. Journal of Climate, 23(3), 618–633. https://doi.org/10.1175/2009JCLI2900.1

    Article  Google Scholar 

  • Baier, W. (1977). Cropweather models and their use in yield assessments. WMO, 151, 48.

    Google Scholar 

  • Basso, B., & Liu, L. (2019). Seasonal crop yield forecast: Methods, applications, and accuracies. 154, 201–255. https://doi.org/10.1016/bs.agron.2018.11.002

  • Basso, B., Cammarano, D., & Carfagna, E. (2013). Review of crop yield forecasting methods and early warning systems. In Proceedings of the first meeting of the scientific advisory committee of the global strategy to improve agricultural and rural statistics. FAO Headquarters (pp. 18–19). Rome, Italy.

    Google Scholar 

  • Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523.

    Article  Google Scholar 

  • Birthal, P., Khan, T., Negi, D., & Agarwal, S. (2014). Impact of climate change on yields of major food crops in India: Implications for food security. Agricultural Economics Research Review, 27(2). https://ideas.repec.org/a/ags/aerrae/196659.html

  • Bussay, A., Velde, M., Fumagalli, D., & Seguini, L. (2015). Improving operational maize yield forecasting in Hungary. Agricultural Systems, 141, 94–106. https://doi.org/10.1016/j.agsy.2015.10.001

    Article  Google Scholar 

  • Cai. (2019). Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agricultural and Forest Meteorology, 274, 144–159, https://doi.org/10.1016/j.agrformet.2019.03.010.

  • Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012

    Article  Google Scholar 

  • Didan, K., Munoz, A., Solano, R., Huete, A. (2018). MOD13A1 MODIS/Terra+Aqua vegetation indices 16-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13A1.006

  • Dkhar, D., Feroze, S., Singh, R., & Ray, L. (2017). Effect of rainfall variability on rice yield in north eastern hills of India: A case study. Agricultural Research, 6(4), 341–346. https://doi.org/10.1007/s40003-017-0276-4

    Article  Google Scholar 

  • Dong, J. (2016). Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing Environment, 185(SI), 142–154.

    Google Scholar 

  • Domenikiotis, C., Spiliotopoulos, M., Tsiros, E., & Dalezios, N. (2004). Early cotton yield assessment by the use of the NOAA/AVHRR derived vegetation condition index (VCI) in Greece. International Journal of Remote Sensing, 25(14), 2807–2819.

    Article  Google Scholar 

  • Food and Agricultural Organization (FAO) (2022) India dataset. https://www.fao.org/india/fao-in-india/india-at-a-glance/en/. Accessed 16 Jan 2022.

  • Fisher. (1925). The influence of rainfall on the yield of wheat at Rothamsted. Philosophical Transactions of the Royal Society, 213, 89–142.

    Google Scholar 

  • Friedl, M., & Sulla-Menashe, D. (2015). MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

    Google Scholar 

  • Gümüşçü, A., Tenekeci, M. E., & Bilgili, A. V. (2020). Estimation of wheat planting date using machine learning algorithms based on available climate data. Sustainable Computing: Informatics and Systems, 28, 100308. https://doi.org/10.1016/j.suscom.2019.01.010

    Article  Google Scholar 

  • Hakkim, V., Joseph, E., Gokul, A., & Mufeedha, K. (2016). Precision farming: The future of Indian agriculture. Journal of Applied Biology and Biotechnology, 4(6).

    Google Scholar 

  • Han. (2020). Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 12(2, Art.2). https://doi.org/10.3390/rs12020236

  • Hendrick, W., & Scholl, J. (1943). Technique in measuring joint relationship. The joint effects of temperature and precipitation on crop yield. North Carolina Agricultural Experimental Statistics Techniques Bulletin, 74.

    Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  • Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49, 224–234.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • India, G. (2011). Faster, sustainable and more inclusive growth: an Approach to the 12th Five Year Plan Draft. Planning Commission, Government of India.

    Google Scholar 

  • Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., & Kim, S. H. (2016). Random forests for global and regional crop yield predictions. PLoS ONE, 11(6), e0156571. https://doi.org/10.1371/journal.pone.0156571

    Article  Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112, 3833–3845.

    Article  Google Scholar 

  • Jones, J., Antle, J., Basso, B., Boote, K., Conant, R., Foster, I., & Wheeler, T. (2016). Brief history of agricultural systems modeling. Agricultural Systems, 155, 240–254.

    Article  Google Scholar 

  • Kamir, F., & Hochman, Z. (2020). Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS Journal of Photogrammetry and Remote Sensing, 160(124), 135.

    Google Scholar 

  • Keig, M., Keig, J., & Mcalpine, W. (1969). WATBAL: A computer system for the estimation and analysis of soil moisture regimes from simple climatic data Tech CSIRO. Division of Land Research, Canberra, 69.

    Google Scholar 

  • Van Keulen, N., Seligman, H., & Van Keulen, P. (1981). Simulation of Nitrogen behaviour of soil-plant systems. Centre for Agricultural Publishing and Documentation Wageningen, 192–220.

    Google Scholar 

  • Kriegler, F., Malila, W., Nalepka, R., & Richardson, W. (1969). Preprocessing transformations and their effects on multispectral recognition. In Proceedings of the sixth international symposium on remote sensing of environment, (pp. 97–131). University of Michigan.

    Google Scholar 

  • Kyunghyun, C., Bart van, M., Caglar, G., Dzmitry, B., Fethi, B., Holger, S., & Yoshua, B. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1724–1734). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.1406.1078.

  • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  • Li, W., Liu, K., Yan, L., Cheng, F., Lv, Y., & Zhang, L. (2019). FRD-CNN: Object detection based on small-scale convolutional neural networks and feature reuse. Science and Reports, 9(1), 16294.

    Article  Google Scholar 

  • Lp daac. (2022). Available https://lpdaac.usgs.gov/. Accessed 25 Jan 2022

  • Malik, D., & Singh, D. (2010). Dynamics of production, processing and export of wheat in India. Journal of Food Security, 1, 1–12.

    Google Scholar 

  • McGuire, I., Shelley, FAO, IFAD & WFP. (2015). The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Advances in Nutrition, 6(5), 623–624.

    Google Scholar 

  • Mikolov, T., Karafiát, M., Burget, L., ÄŒernocký, J.H., & Khudanpur, S. (2010). Recurrent neural network based language model. In Proceedings of the 11th annual conference of the international speech communication association, no. 9, ISSN 1990-9772.

    Google Scholar 

  • Nguyen, T. T., Doan, T. M., Tomppo, E., & McRoberts, R. E. (2020). Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods—A case study from Dak Nong, Vietnam. Remote Sensing, 12(9, Art.9). https://doi.org/10.3390/rs12091367.

  • Petrică, A., Stancu, S., & Tindeche, A. (2016). Limitation of ARIMA models in financial and monetary economics. Theoretical and Applied Economics, XXIII(4(609), Winter), 19–42, https://ideas.repec.org/a/agr/journl/vxxiiiy2016i4(609)p19-42.html.

  • Prasada, A., Chai, L., Singha, R., & Kafatos, M. (2006). Crop yield estimation model for IOWA using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8, 26–33.

    Article  Google Scholar 

  • Rauff, O., & Bello, R. (2015). A review of crop growth simulation models as tools for agricultural meteorology. Agricultural Sciences, 6(9), 1098–1105. https://doi.org/10.4236/as.2015.69105

    Article  Google Scholar 

  • Roberts, M., Braun, N., Sinclair, T., Lobell, D., & Schlenker, W. (2017). Comparing and combining process-based crop models and statistical models with some implications for climate change. Environmental Research Letters, 12(9), 095010. https://doi.org/10.1088/1748-9326/aa7f33

    Article  Google Scholar 

  • Rocha, A. V., & Shaver, G. R. (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149, 1560–1563.

    Article  Google Scholar 

  • Rouse, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. In Proceedings of Third ERTS symposium (pp. 309–317). NASA.

    Google Scholar 

  • Shahhosseini, M., Martinez-Feria, R. A., Hu, G., & Archontoulis, S. V. (2019). Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab5268

    Article  Google Scholar 

  • Sharma, R., Kamble, S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers and Operations Research, 119, 104926. https://doi.org/10.1016/j.cor.2020.104926

    Article  MathSciNet  MATH  Google Scholar 

  • Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306

    Article  MathSciNet  MATH  Google Scholar 

  • Shin, J. Y., Kim, K. R., & Ha, J. C. (2020). Seasonal forecasting of daily mean air temperatures using a coupled global climate model and machine learning algorithm for field-scale agricultural management. Agricultural and Forest Meteorology, 281(107858).

    Google Scholar 

  • Thomas, G., Taylor, J., & Wood, G. (1997). Mapping yield potential with remote sensing. Precision Agriculture, 713–720.

    Google Scholar 

  • Vermote, E. (2015). MOD09A1 MODIS/Terra surface reflectance 8-Day L3 global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD09A1.006

    Article  Google Scholar 

  • Wan, Z., Hook, S., & Hulley, G. (2015). MYD11A2 MODIS/Aqua land surface temperature/emissivity 8-Day L3 global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD11A2.006

    Article  Google Scholar 

  • Wilkerson, G., Jones, W., Boote, J., Ingram, T., & Mishoe, W. (1983). Modeling soybean growth for crop management. Transactions of the American Society of Agricultural Engineers, 26, 63–73.

    Article  Google Scholar 

  • Willcock, S., Javier, M., Danny, P., Kenneth, J., Stefano, B., Alessia, M., Carlo, P., Saverio, S., Giovanni, S., Brian, V., Ferdinando, V., James, M., & Ioannis, N. (2018). Machine learning for ecosystem services. Ecosystem Services, 33, 165–174. https://doi.org/10.1016/j.ecoser.2018.04.004

    Article  Google Scholar 

  • Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2016). Transfer learning from deep features for remote sensing and poverty mapping. In Thirtieth AAAI conference on artificial intelligence.

    Google Scholar 

  • Yield Statistics Data (2022). https://aps.dac.gov.in/APY/Index.htm Accessed 20 Feb 2022

  • Zhu, X., Guo, R., Liu, T., & Xu, K. (2021). Crop yield prediction based on agrometeorological indexes and remote sensing data. Remote Sensing, 13(10, Art.10). https://doi.org/10.3390/rs13102016.

Download references

Acknowledgements

We thank Dr. Srikrishnan Divakaran from Ahmedabad University for providing valuable input and guidance. In addition, the authors heartfully thank L D College of Engineering and Ahmedabad University for providing the computing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, P., Shah, M., Raval, M.S., Chaudhary, S., Parmar, H. (2023). Impact of Vegetation Indices on Wheat Yield Prediction Using Spatio-Temporal Modeling. In: Chaudhary, S., Biradar, C.M., Divakaran, S., Raval, M.S. (eds) Digital Ecosystem for Innovation in Agriculture. Studies in Big Data, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-99-0577-5_10

Download citation

Publish with us

Policies and ethics