Skip to main content

AhBuNe Agent: Winner of the Eleventh International Automated Negotiating Agent Competition (ANAC 2020)

  • 180 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 1092)


The International Automated Negotiating Agent Competition introduces a new challenge each year to facilitate the research on agent-based negotiation and provide a test benchmark. ANAC 2020 addressed the problem of designing effective agents that do not know their users’ complete preferences in addition to their opponent’s negotiation strategy. Accordingly, this paper presents the negotiation strategy of the winner agent called “AhBuNe Agent”. The proposed heuristic-based bidding strategy checks whether it has sufficient orderings to reason about its complete preferences and accordingly decides whether to sacrifice some utility in return for preference elicitation. While making an offer, it uses the most-desired known outcome as a reference and modifies the content of the bid by adopting a concession-based strategy. By analyzing the content of the given ordered bids, the importance ranking of the issues is estimated. As our agent adopts a fixed time-based concession strategy and takes the estimated issue importance ranks into account, it determines to what extent the issues are to be modified. The evaluation results of the ANAC 2020 show that our agent beats the other participating agents in terms of the received individual score.


  • Automated negotiation
  • Agent competition
  • Partial preference ordering
  • Negotiation strategy

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers protocols for multilateral negotiation. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 153–167. Springer, Cham (2017).

    CrossRef  Google Scholar 

  2. Aydogan, R., Fujita, K., Baarslag, T., Jonker, C.M., Ito, T.: ANAC 2018: repeated multilateral negotiation league. In: The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, Japan (2019)

    Google Scholar 

  3. Aydoğan, R., Yolum, P.: Learning disjunctive preferences for negotiating effectively. In: Eighth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1201–1202 (2009).

  4. Aydoğan, R., et al.: Challenges and main results of the automated negotiating agents competition (ANAC) 2019. In: Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds.) EUMAS/AT -2020. LNCS (LNAI), vol. 12520, pp. 366–381. Springer, Cham (2020).

    CrossRef  Google Scholar 

  5. Aydoğan, R., et al.: A baseline for non-linear bilateral negotiations: the full results of the agents competing in ANAC 2014. In: Frontiers in Artificial Intelligence: Intelligent Computational Systems, pp. 96–122. Bentham Science (2017)

    Google Scholar 

  6. Baarslag, T., Hendrikx, M.J.C., Hindriks, K., Jonker, C.: Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques. Auton. Agent. Multi-Agent Syst. 30, 849–898 (2015)

    CrossRef  Google Scholar 

  7. Baarslag, T., Gerding, E.H., Aydoğan, R., Schraefel, M.: Optimal negotiation decision functions in time-sensitive domains. In: 2015 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, pp. 190–197 (2015).

  8. Baarslag, T., Hindriks, K.V., Jonker, C.M.: Effective acceptance conditions in real-time automated negotiation. Decis. Support Syst. 60, 68–77 (2014).

  9. Baarslag, T., Kaisers, M., Gerding, E.H., Jonker, C.M., Gratch, J.: Self-sufficient, self-directed, and interdependent negotiation systems: a roadmap toward autonomous negotiation agents. In: Karagözoğlu, E., Hyndman, K.B. (eds.) Bargaining: Current Research and Future Directions, pp. 387–406. Springer, Cham (2022).

    CrossRef  Google Scholar 

  10. Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation. Cambridge University Press, Cambridge (2014)

    CrossRef  Google Scholar 

  11. Fujita, K., Aydoğan, R., Baarslag, T., Hindriks, K., Ito, T., Jonker, C.: The sixth automated negotiating agents competition (ANAC 2015). In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 139–151. Springer, Cham (2017).

    CrossRef  Google Scholar 

  12. de Jonge, D., Baarslag, T., Aydoğan, R., Jonker, C., Fujita, K., Ito, T.: The challenge of negotiation in the game of diplomacy. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 100–114. Springer, Cham (2019).

    CrossRef  Google Scholar 

  13. Jonker, C.M., Aydoğan, R., Baarslag, T., Fujita, K., Ito, T., Hindriks, K.: Automated negotiating agents competition (ANAC). In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 5070–5072. AAAI Press (2017)

    Google Scholar 

  14. Jonker, C.M., Aydoğan, R.: Deniz: a robust bidding strategy for negotiation support systems. In: Ito, T., Zhang, M., Aydoğan, R. (eds.) ACAN 2018. SCI, vol. 905, pp. 29–44. Springer, Singapore (2021).

    CrossRef  Google Scholar 

  15. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys. Doklady 10, 707 (1966)

    MathSciNet  Google Scholar 

  16. Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K.V., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014).

    CrossRef  MathSciNet  Google Scholar 

  17. Marsa-Maestre, I., Klein, M., Jonker, C.M., Aydoğan, R.: From problems to protocols: towards a negotiation handbook. Decis. Support Syst. 39–54 (2014)

    Google Scholar 

  18. Marsá-Maestre, I., López-Carmona, M.A., Klein, M., Ito, T., Fujita, K.: Addressing utility space complexity in negotiations involving highly uncorrelated, constraint-based utility spaces. Comput. Intell. 30(1), 1–29 (2014).

    CrossRef  MathSciNet  Google Scholar 

  19. Mell, J., Gratch, J., Baarslag, T., Aydoğan, R., Jonker, C.M.: Results of the first annual human-agent league of the automated negotiating agents competition. In: In Proceedings of the 18th International Conference on Intelligent Virtual Agents, pp. 23–28. ACM (2018)

    Google Scholar 

  20. Mohammad, Y., Viqueira, E.A., Ayerza, N.A., Greenwald, A., Nakadai, S., Morinaga, S.: Supply chain management world. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds.) PRIMA 2019. LNCS (LNAI), vol. 11873, pp. 153–169. Springer, Cham (2019).

    CrossRef  Google Scholar 

  21. Razeghi, Y., Yavuz, O., Aydoğan, R.: Deep reinforcement learning for acceptance strategy in bilateral negotiations. Turk. J. Electr. Eng. Comput. Sci. 28, 1824–1840 (2020).

    CrossRef  Google Scholar 

  22. Sanchez-Anguix, V., Tunalı, O., Aydoğan, R., Julian, V.: Can social agents efficiently perform in automated negotiation? Appl. Sci. 11(13) (2021).

  23. Srinivasan, V., Shocker, A.: Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika 38, 473–493 (1973)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Tsimpoukis, D., Baarslag, T., Kaisers, M., Paterakis, N.G.: Automated negotiations under user preference uncertainty: a linear programming approach. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 115–129. Springer, Cham (2019).

    CrossRef  Google Scholar 

  25. Tunalı, O., Aydoğan, R., Sanchez-Anguix, V.: Rethinking frequency opponent modeling in automated negotiation. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 263–279. Springer, Cham (2017).

    CrossRef  Google Scholar 

Download references


We would like to thank Prof. Dr. Catholijn Jonker, Assoc. Prof. Dr. Katsuhide Fujita, Assist. Prof. Dr. Reyhan Aydoğan, and Dr. Tim Baarslag for sharing the ANAC 2020 tournament results.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ahmet Burak Yildirim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yildirim, A.B., Sunman, N., Aydoğan, R. (2023). AhBuNe Agent: Winner of the Eleventh International Automated Negotiating Agent Competition (ANAC 2020). In: Hadfi, R., Aydoğan, R., Ito, T., Arisaka, R. (eds) Recent Advances in Agent-Based Negotiation: Applications and Competition Challenges. IJCAI 2022. Studies in Computational Intelligence, vol 1092. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0560-7

  • Online ISBN: 978-981-99-0561-4

  • eBook Packages: EngineeringEngineering (R0)