Abstract
The International Automated Negotiating Agent Competition introduces a new challenge each year to facilitate the research on agent-based negotiation and provide a test benchmark. ANAC 2020 addressed the problem of designing effective agents that do not know their users’ complete preferences in addition to their opponent’s negotiation strategy. Accordingly, this paper presents the negotiation strategy of the winner agent called “AhBuNe Agent”. The proposed heuristic-based bidding strategy checks whether it has sufficient orderings to reason about its complete preferences and accordingly decides whether to sacrifice some utility in return for preference elicitation. While making an offer, it uses the most-desired known outcome as a reference and modifies the content of the bid by adopting a concession-based strategy. By analyzing the content of the given ordered bids, the importance ranking of the issues is estimated. As our agent adopts a fixed time-based concession strategy and takes the estimated issue importance ranks into account, it determines to what extent the issues are to be modified. The evaluation results of the ANAC 2020 show that our agent beats the other participating agents in terms of the received individual score.
Keywords
- Automated negotiation
- Agent competition
- Partial preference ordering
- Negotiation strategy
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers protocols for multilateral negotiation. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 153–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_10
Aydogan, R., Fujita, K., Baarslag, T., Jonker, C.M., Ito, T.: ANAC 2018: repeated multilateral negotiation league. In: The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, Japan (2019)
Aydoğan, R., Yolum, P.: Learning disjunctive preferences for negotiating effectively. In: Eighth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1201–1202 (2009). https://doi.org/10.1145/1558109.1558212
Aydoğan, R., et al.: Challenges and main results of the automated negotiating agents competition (ANAC) 2019. In: Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds.) EUMAS/AT -2020. LNCS (LNAI), vol. 12520, pp. 366–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66412-1_23
Aydoğan, R., et al.: A baseline for non-linear bilateral negotiations: the full results of the agents competing in ANAC 2014. In: Frontiers in Artificial Intelligence: Intelligent Computational Systems, pp. 96–122. Bentham Science (2017)
Baarslag, T., Hendrikx, M.J.C., Hindriks, K., Jonker, C.: Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques. Auton. Agent. Multi-Agent Syst. 30, 849–898 (2015)
Baarslag, T., Gerding, E.H., Aydoğan, R., Schraefel, M.: Optimal negotiation decision functions in time-sensitive domains. In: 2015 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, pp. 190–197 (2015). https://doi.org/10.1109/WI-IAT.2015.161
Baarslag, T., Hindriks, K.V., Jonker, C.M.: Effective acceptance conditions in real-time automated negotiation. Decis. Support Syst. 60, 68–77 (2014). https://doi.org/10.1016/j.dss.2013.05.021
Baarslag, T., Kaisers, M., Gerding, E.H., Jonker, C.M., Gratch, J.: Self-sufficient, self-directed, and interdependent negotiation systems: a roadmap toward autonomous negotiation agents. In: Karagözoğlu, E., Hyndman, K.B. (eds.) Bargaining: Current Research and Future Directions, pp. 387–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-76666-5_18
Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation. Cambridge University Press, Cambridge (2014)
Fujita, K., Aydoğan, R., Baarslag, T., Hindriks, K., Ito, T., Jonker, C.: The sixth automated negotiating agents competition (ANAC 2015). In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 139–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51563-2_9
de Jonge, D., Baarslag, T., Aydoğan, R., Jonker, C., Fujita, K., Ito, T.: The challenge of negotiation in the game of diplomacy. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 100–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_8
Jonker, C.M., Aydoğan, R., Baarslag, T., Fujita, K., Ito, T., Hindriks, K.: Automated negotiating agents competition (ANAC). In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 5070–5072. AAAI Press (2017)
Jonker, C.M., Aydoğan, R.: Deniz: a robust bidding strategy for negotiation support systems. In: Ito, T., Zhang, M., Aydoğan, R. (eds.) ACAN 2018. SCI, vol. 905, pp. 29–44. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5869-6_3
Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys. Doklady 10, 707 (1966)
Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K.V., Jonker, C.M.: Genius: an integrated environment for supporting the design of generic automated negotiators. Comput. Intell. 30(1), 48–70 (2014). https://doi.org/10.1111/j.1467-8640.2012.00463.x
Marsa-Maestre, I., Klein, M., Jonker, C.M., Aydoğan, R.: From problems to protocols: towards a negotiation handbook. Decis. Support Syst. 39–54 (2014)
Marsá-Maestre, I., López-Carmona, M.A., Klein, M., Ito, T., Fujita, K.: Addressing utility space complexity in negotiations involving highly uncorrelated, constraint-based utility spaces. Comput. Intell. 30(1), 1–29 (2014). https://doi.org/10.1111/j.1467-8640.2012.00461.x
Mell, J., Gratch, J., Baarslag, T., Aydoğan, R., Jonker, C.M.: Results of the first annual human-agent league of the automated negotiating agents competition. In: In Proceedings of the 18th International Conference on Intelligent Virtual Agents, pp. 23–28. ACM (2018)
Mohammad, Y., Viqueira, E.A., Ayerza, N.A., Greenwald, A., Nakadai, S., Morinaga, S.: Supply chain management world. In: Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R. (eds.) PRIMA 2019. LNCS (LNAI), vol. 11873, pp. 153–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33792-6_10
Razeghi, Y., Yavuz, O., Aydoğan, R.: Deep reinforcement learning for acceptance strategy in bilateral negotiations. Turk. J. Electr. Eng. Comput. Sci. 28, 1824–1840 (2020). https://doi.org/10.3906/elk-1907-215
Sanchez-Anguix, V., Tunalı, O., Aydoğan, R., Julian, V.: Can social agents efficiently perform in automated negotiation? Appl. Sci. 11(13) (2021). https://doi.org/10.3390/app11136022. https://www.mdpi.com/2076-3417/11/13/6022
Srinivasan, V., Shocker, A.: Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika 38, 473–493 (1973)
Tsimpoukis, D., Baarslag, T., Kaisers, M., Paterakis, N.G.: Automated negotiations under user preference uncertainty: a linear programming approach. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 115–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_9
Tunalı, O., Aydoğan, R., Sanchez-Anguix, V.: Rethinking frequency opponent modeling in automated negotiation. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 263–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_16
Acknowledgement
We would like to thank Prof. Dr. Catholijn Jonker, Assoc. Prof. Dr. Katsuhide Fujita, Assist. Prof. Dr. Reyhan Aydoğan, and Dr. Tim Baarslag for sharing the ANAC 2020 tournament results.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yildirim, A.B., Sunman, N., Aydoğan, R. (2023). AhBuNe Agent: Winner of the Eleventh International Automated Negotiating Agent Competition (ANAC 2020). In: Hadfi, R., Aydoğan, R., Ito, T., Arisaka, R. (eds) Recent Advances in Agent-Based Negotiation: Applications and Competition Challenges. IJCAI 2022. Studies in Computational Intelligence, vol 1092. Springer, Singapore. https://doi.org/10.1007/978-981-99-0561-4_6
Download citation
DOI: https://doi.org/10.1007/978-981-99-0561-4_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0560-7
Online ISBN: 978-981-99-0561-4
eBook Packages: EngineeringEngineering (R0)