Skip to main content

Diet-Gene Interactions that Regulate Longevity and Diseases

  • Chapter
  • First Online:
Evidence-based Functional Foods for Prevention of Age-related Diseases

Abstract

Aging, an almost universal phenomenon, encompasses a gradual yet constant deterioration of the metabolic functions of the body. Aging is characterized by an increased homeostatic imbalance and an elevated risk of systemic metabolic failures leading to diseases, with the ultimate outcome being death. Age-related metabolic disorders, such as cardiovascular diseases and type-2 diabetes, are among the major causes of mortality worldwide. A plethora of research has established that aging is regulated by genes functioning in important metabolic pathways. Thus quite expectedly, the nutrient content of a diet has been found to modulate the lifespan of an organism and define the severity or course of several age-related or other illnesses. Under normal conditions, an organism can modulate its gene expression to adapt to these diet-induced metabolic changes to display normal health and lifespan. However, in the presence of an altered allele, the effects of diet or one of its components may become apparent in terms of health, disease, or longevity effects. Identifying such diet-gene pairs and the associated molecular mechanisms is necessary for developing dietary and therapeutic interventions that would prevent or treat diseases and promote healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALH-6:

ALdehyde Dehydrogenase

AMD:

Age-related macular degeneration

APOA5:

APOlipoprotein A-V

APOE:

APOlipoprotein E

ATP7B:

ATPase copper transporting 7 Beta

ATPsynD:

ATP synthase subunit D

BCAA:

Branched-chain amino acids

BRS-3:

Bombesin Receptor Subtype 3

CCHa2R:

CCHamide-2 Receptor

CVD:

Cardiovascular diseases

DGRP:

Drosophila genetic reference panel

DTT:

Dithiothreitol

ech-6:

Enoyl-CoA hydratase

FLR-4:

FLuoRide resistant 4

FTO:

FaT mass and Obesity

GLUT:

GLUcose Transporter

GSTM1:

Glutathione S-Transferase Mu

HC:

High caloric

HDL:

High-density lipoprotein

HMGCR:

3-Hydroxy-3-MethylGlutaryl-Coenzyme A Reductase

HNF4:

Hepatocyte Nuclear Factor 4

HP-LS:

High protein and low sugar

HS-LP:

High sugar and low protein

IRS1:

Insulin Receptor Substrate 1

LD:

Lipid droplets

LDL:

Low-density lipoprotein

LPS:

LipoPolySaccharide

MAPK:

Mitogen activated protein kinase

MEF2:

Myocyte Enhancer Factor 2

MRPL-2:

Mitochondrial Ribosomal Protein Like 2

MTHFR:

MethylTetraHydroFolate Reductase

MUFA:

Monounsaturated fatty acids

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate reduced

NHR-114:

Nuclear Hormone Receptor 114

NMUR-1:

NeuroMedin U Receptor 1

NRF2:

NF-E2-Related transcription factor

OSM-3:

OSMotic avoidance abnormal

P5C:

1-Pyrroline-5-carboxylate

P-80:

Polysorbate 80

PLP:

PyridoxaL 5’-phosphate

PMT-2:

Phosphatidylethanolamine MethylTransferase 2

PNPO:

Pyridox(am)iNe 5-Phosphate Oxidase

PUFA:

PolyUnsaturated fatty acids

RANKL:

Receptor Activator of Nuclear factor-Kappa-Î’ Ligand

RICT-1:

Rapamycin-Insensitive Companion of TOR

RIPS-1:

Rhy-1-Interacting Protein in Sulfide

RPE:

Retinal pigmented epithelium

SAM:

S-adenosyl methionine

SIRT-6:

NAD+-dependent deacetylase (SIRTuin-6)

SKN-1:

SKiNhead 1

SNP:

Single nucleotide polymorphism

SOD2:

SuperOxide Dismutase 2

Spen:

Split ends

T2DM:

Type-2 diabetes mellitus

TCF7L2:

TransCription Factor 7-Like 2

TG:

Triglyceride

TNFα:

Tumor Necrosis Factor-alpha

UPRmt:

Mitochondrial unfolded protein response

ZPR1:

Zinc finger PRotein-1

References

  • Alcala-Diaz JF, Arenas-de Larriva AP, Torres-Pena JD, Rodriguez-Cantalejo F, Rangel-Zuniga OA, Yubero-Serrano EM, Gutierrez-Mariscal FM, Cardelo MP, Luque RM, Ordovas JM, Perez-Martinez P, Delgado-Lista J, Lopez-Miranda J (2022) A gene variation at the ZPR1 locus (rs964184) interacts with the type of diet to modulate postprandial triglycerides in patients with coronary artery disease: from the coronary diet intervention with olive oil and cardiovascular prevention study. Front Nutr 9:885256

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP (2009) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8(4):353–369

    Article  CAS  PubMed  Google Scholar 

  • Amin MR, Mahmud SA, Dowgielewicz JL, Sapkota M, Pellegrino MW (2020) A novel gene-diet interaction promotes organismal lifespan and host protection during infection via the mitochondrial UPR. PLoS Genet 16(12):e1009234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashfield-Watt PA, Pullin CH, Whiting JM, Clark ZE, Moat SJ, Newcombe RG, Burr ML, Lewis MJ, Powers HJ, McDowell IF (2002) Methylenetetrahydrofolate reductase 677C-->T genotype modulates homocysteine responses to a folate-rich diet or a low-dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr 76(1):180–186

    Article  CAS  PubMed  Google Scholar 

  • Babu BM, Reddy BP, Priya VH, Munshi A, Rani HS, Latha GS, Rao VD, Jyothy A (2012) Cytokine gene polymorphisms in the susceptibility to acute coronary syndrome. Genet Test Mol Biomarkers 16(5):359–365

    Article  PubMed  Google Scholar 

  • Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549

    Article  CAS  PubMed  Google Scholar 

  • Biswal MR, Justis BD, Han P, Li H, Gierhart D, Dorey CK, Lewin AS (2018) Daily zeaxanthin supplementation prevents atrophy of the retinal pigment epithelium (RPE) in a mouse model of mitochondrial oxidative stress. PLoS One 13(9):e0203816

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS One 4(10):e7545

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi W, Iyengar ASR, Fu W, Liu W, Berg AE, Wu CF, Zhuang X (2022) Drosophila carrying epilepsy-associated variants in the vitamin B6 metabolism gene PNPO display allele- and diet-dependent phenotypes. Proc Natl Acad Sci U S A 119(9):e2115524119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmurzynska A, Muzsik A, Krzyzanowska-Jankowska P, Madry E, Walkowiak J, Bajerska J (2019) PPARG and FTO polymorphism can modulate the outcomes of a central European diet and a Mediterranean diet in centrally obese postmenopausal women. Nutr Res 69:94–100

    Article  CAS  PubMed  Google Scholar 

  • Cluett C, Melzer D (2009) Human genetic variations: beacons on the pathways to successful ageing. Mech Ageing Dev 130(9):553–563

    Article  CAS  PubMed  Google Scholar 

  • D’Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, Caliaro F, Corsetti G, Bottinelli R, Carruba MO, Valerio A, Nisoli E (2010) Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab 12(4):362–372

    Article  PubMed  Google Scholar 

  • Dalziel B, Gosby AK, Richman RM, Bryson JM, Caterson ID (2002) Association of the TNF-alpha −308 G/A promoter polymorphism with insulin resistance in obesity. Obes Res 10(5):401–407

    Article  CAS  PubMed  Google Scholar 

  • Di Renzo L, Cioccoloni G, Falco S, Abenavoli L, Moia A, Sinibaldi Salimei P, De Lorenzo A (2018) Influence of FTO rs9939609 and Mediterranean diet on body composition and weight loss: a randomized clinical trial. J Transl Med 16(1):308

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC (2015) Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 16:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis D, Ghazanfar S, Havula E, Krycer JR, Strbenac D, Senior A, Minard AY, Geddes T, Nelson ME, Weiss F, Stockli J, Yang JYH, James DE (2021) Genome-wide analysis in Drosophila reveals diet-by-gene interactions and uncovers diet-responsive genes. G3 (Bethesda) 11(10):jkab171

    Article  CAS  PubMed  Google Scholar 

  • Freitas RN, Khaw KT, Wu K, Bowman R, Jeffery H, Luben R, Wareham NJ, Bingham SA (2010a) A single nucleotide polymorphism in the 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (HMGCR) influences the serum triacylglycerol relationship with dietary fat and fibre in the European Prospective Investigation into Cancer and Nutrition in Norfolk (EPIC-Norfolk) study. Br J Nutr 104(5):765–772

    Article  CAS  PubMed  Google Scholar 

  • Freitas RN, Khaw KT, Wu K, Bowman R, Jeffery H, Luben R, Wareham NJ, Rodwell S (2010b) HMGCR gene polymorphism is associated with stroke risk in the EPIC-Norfolk study. Eur J Cardiovasc Prev Rehabil 17(1):89–93

    Article  PubMed  Google Scholar 

  • Gaudet MM, Olshan AF, Poole C, Weissler MC, Watson M, Bell DA (2004) Diet, GSTM1 and GSTT1 and head and neck cancer. Carcinogenesis 25(5):735–740

    Article  CAS  PubMed  Google Scholar 

  • Geisler SA, Olshan AF (2001) GSTM1, GSTT1, and the risk of squamous cell carcinoma of the head and neck: a mini-HuGE review. Am J Epidemiol 154(2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Gharibzahedi SMT, Jafari SM (2017) The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 62:119–132

    Article  CAS  Google Scholar 

  • Gillette CM, Hazegh KE, Nemkov T, Stefanoni D, D’Alessandro A, Taliaferro JM, Reis T (2020) Gene-diet interactions: dietary rescue of metabolic effects in spen-depleted Drosophila melanogaster. Genetics 214(4):961–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gokul G, Singh J (2022) Dithiothreitol causes toxicity in C. elegans by modulating the methionine-homocysteine cycle. elife 11:e76021

    Article  Google Scholar 

  • Gomez-Delgado F, Alcala-Diaz JF, Garcia-Rios A, Delgado-Lista J, Ortiz-Morales A, Rangel-Zuniga O, Tinahones FJ, Gonzalez-Guardia L, Malagon MM, Bellido-Munoz E, Ordovas JM, Perez-Jimenez F, Lopez-Miranda J, Perez-Martinez P (2014) Polymorphism at the TNF-alpha gene interacts with Mediterranean diet to influence triglyceride metabolism and inflammation status in metabolic syndrome patients: from the CORDIOPREV clinical trial. Mol Nutr Food Res 58(7):1519–1527

    Article  CAS  PubMed  Google Scholar 

  • Gracida X, Eckmann CR (2013) Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 23(7):607–613

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1(1):119–128

    Article  CAS  PubMed  Google Scholar 

  • Hanson AJ, Bayer JL, Baker LD, Cholerton B, VanFossen B, Trittschuh E, Rissman RA, Donohue MC, Moghadam SH, Plymate SR, Craft S (2015) Differential effects of meal challenges on cognition, metabolism, and biomarkers for apolipoprotein E varepsilon4 carriers and adults with mild cognitive impairment. J Alzheimers Dis 48(1):205–218

    Article  CAS  PubMed  Google Scholar 

  • Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21(4):1393–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 6:31

    Article  PubMed  Google Scholar 

  • Hindy G, Mollet IG, Rukh G, Ericson U, Orho-Melander M (2016) Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. Genes Nutr 11:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang CQ, Liu B, Cheung BM, Lam TH, Lin JM, Li Jin Y, Yue XJ, Ong KL, Tam S, Wong KS, Tomlinson B, Lam KS, Thomas GN (2010) A single nucleotide polymorphism in APOA5 determines triglyceride levels in Hong Kong and Guangzhou Chinese. Eur J Hum Genet 18(11):1255–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW 3rd, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D (2020) Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 16(7):e1008835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AA, Stolzing A (2019) The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18(6):e13048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsura I, Kondo K, Amano T, Ishihara T, Kawakami M (1994) Isolation, characterization and epistasis of fluoride-resistant mutants of Caenorhabditis elegans. Genetics 136(1):145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klena J, Zhang P, Schwartz O, Hull S, Chen T (2005) The core lipopolysaccharide of Escherichia coli is a ligand for the dendritic-cell-specific intercellular adhesion molecule nonintegrin CD209 receptor. J Bacteriol 187(5):1710–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrenson JG, Evans JR (2015) Omega 3 fatty acids for preventing or slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 2015(4):CD010015

    PubMed  PubMed Central  Google Scholar 

  • Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58(1):1–10

    Article  PubMed  Google Scholar 

  • Liu YJ, Gao AW, Smith RL, Janssens GE, Panneman DM, Jongejan A, van Weeghel M, Vaz FM, Silvestrini MJ, Lapierre LR, MacInnes AW, Houtkooper RH (2022) Reduced ech-6 expression attenuates fat-induced lifespan shortening in C. elegans. Sci Rep 12(1):3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier W, Adilov B, Regenass M, Alcedo J (2010) A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan. PLoS Biol 8(5):e1000376

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansfeld J, Urban N, Priebe S, Groth M, Frahm C, Hartmann N, Gebauer J, Ravichandran M, Dommaschk A, Schmeisser S, Kuhlow D, Monajembashi S, Bremer-Streck S, Hemmerich P, Kiehntopf M, Zamboni N, Englert C, Guthke R, Kaleta C, Platzer M, Suhnel J, Witte OW, Zarse K, Ristow M (2015) Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat Commun 6:10043

    Article  CAS  PubMed  Google Scholar 

  • Mattila J, Hietakangas V (2017) Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics 207(4):1231–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair T, Chakraborty R, Singh P, Rahman SS, Bhaskar AK, Sengupta S, Mukhopadhyay A (2022) Adaptive capacity to dietary vitamin B12 levels is maintained by a gene-diet interaction that ensures optimal life span. Aging Cell 21(1):e13518

    Article  CAS  PubMed  Google Scholar 

  • Ortega A, Berna G, Rojas A, Martin F, Soria B (2017) Gene-diet interactions in type 2 diabetes: the chicken and egg debate. Int J Mol Sci 18(6):1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang S, Curran SP (2012) Longevity and the long arm of epigenetics: acquired parental marks influence lifespan across several generations. BioEssays 34(8):652–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang S, Curran SP (2014) Adaptive capacity to bacterial diet modulates aging in C. elegans. Cell Metab 19(2):221–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhitko AA, Jouandin P, Mohr SE, Perrimon N (2019) Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 18(6):e13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhitko AA, Filine E, Mohr SE, Moskalev A, Perrimon N (2020) Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 64:101188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L (2014) Gene-diet interaction and weight loss. Curr Opin Lipidol 25(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu CJ, Ye XZ, Yu XJ, Peng XR, Li TH (2014) Association between FABP2 Ala54Thr polymorphisms and type 2 diabetes mellitus risk: a HuGE review and meta-analysis. J Cell Mol Med 18(12):2530–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla N, Kolthur-Seetharam U (2022) Drosophila Sirtuin 6 mediates developmental diet-dependent programming of adult physiology and survival. Aging Cell 21(3):e13576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM, Brust-Mascher I, Scholey JM (2004) Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6(11):1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G (2009) Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev 23(4):496–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squitti R, Siotto M, Polimanti R (2014) Low-copper diet as a preventive strategy for Alzheimer’s disease. Neurobiol Aging 35(Suppl 2):S40–S50

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wheeler CT, Yolitz J, Laslo M, Alberico T, Sun Y, Song Q, Zou S (2014) A mitochondrial ATP synthase subunit interacts with TOR signaling to modulate protein homeostasis and lifespan in Drosophila. Cell Rep 8(6):1781–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DR (2006) Vitamins in aging, health, and longevity. Clin Interv Aging 1(1):81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmerman KL, Volpi E (2008) Amino acid metabolism and regulatory effects in aging. Curr Opin Clin Nutr Metab Care 11(1):45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuo J, Ross RJ, Herzlich AA, Shen D, Ding X, Zhou M, Coon SL, Hussein N, Salem N Jr, Chan CC (2009) A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration. Am J Pathol 175(2):799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3(2):e53

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma S, Jagtap U, Goyala A, Mukhopadhyay A (2018) A novel gene-diet pair modulates C. elegans aging. PLoS Genet 14(8):e1007608

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Wu H, Pan A, Patel B, Xiang G, Qi L, Kaplan RC, Hu F, Wylie-Rosett J, Qi Q (2016) FTO genotype and weight loss in diet and lifestyle interventions: a systematic review and meta-analysis. Am J Clin Nutr 103(4):1162–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Li X, Shi X, Karpac J (2020) Diet-MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan. Aging Cell 19(7):e13172

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, T., Verma, S., Mukhopadhyay, A. (2023). Diet-Gene Interactions that Regulate Longevity and Diseases. In: Pathak, S., Banerjee, A., Duttaroy, A.K. (eds) Evidence-based Functional Foods for Prevention of Age-related Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-0534-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0534-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0533-1

  • Online ISBN: 978-981-99-0534-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics