Skip to main content

Machine Learning for Next‐Generation Functional Materials

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

Machine learning (ML) is a powerful technique for extracting insights from multivariate data quickly and efficiently. It provides a much-needed way to speed up the research and investigation of functional materials in order to address time-sensitive worldwide issues like COVID-19. But Scientists on the other hand are reporting and patenting new functional materials on a day-to-day basis covering medicine to aerospace. The challenge for researchers is to choose the ideal materials for the design and fabrication of devices and instruments to withstand all weather conditions. Machine learning has been developed for a variety of applications in recent years, including diverse experimentation, device optimization, and material discovery. Increased functionality in next-generation functional materials can improve the application, productivity, and energy efficiency and these qualities can also be used to create a new design concept for renewable energy generation. There is a thorough introduction to the principles of machine learning for functional materials. This chapter covers the challenges in advanced functional materials research and the role of machine learning in design, simulation, and evaluation. Finally, significant pointers to successful machine learning applications are addressed, as well as the remaining hurdles in machine learning for next-generation functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choudhary, A. K., Jansche, A., Grubesa, T., Bernthaler, T., & Schneider, G. Machine learning for microstructures classification in functional materials.

    Google Scholar 

  2. Schmidt, J., Marques, M. R., Botti, S., & Marques, M. A. (2019). Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials, 5(1), 1–36.

    Google Scholar 

  3. The Materials Genome Initiative marks its first decade with a new strategic plan Created June 26, 2018, Updated September 1, 2021.

    Google Scholar 

  4. Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P. B., Joe, B., & Cheng, X. (2020). Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics, 52(4), 200–202.

    Google Scholar 

  5. Cheng, Z. J., & Shan, J. (2020). 2019 Novel coronavirus: Where we are and what we know. Infection, 48(2), 155–163.

    Google Scholar 

  6. Chi-Hsien, K., & Nagasawa, S. (2019). Applying machine learning to market analysis: Knowing your luxury consumer. Journal of Management Analytics, 6(4), 404–419.

    Google Scholar 

  7. Xu, L. D. (2020). Industrial innovation in the intervention and prevention of COVID-19. Journal of Industrial Integration and Management, 5(04), 409–412.

    Google Scholar 

  8. Magar, R., Yadav, P., & Barati Farimani, A. (2021). Potential neutralizing antibodies discovered for novel corona virus using machine learning. Scientific Reports, 11(1), 1–11.

    Google Scholar 

  9. Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori, C., Huijben, I., Chennakeshava, N., Mento, F., Sentelli, A., Peschiera, E., Trevisan, R., Maschietto, G., Torri, E., Inchingolo, R., Smargiassi, A., Soldati, G., Rota, P., Passerini, A., et al. (2020). Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Transactions on Medical Imaging, 39(8).

    Google Scholar 

  10. Kullaya Swamy, A., & Sarojamma, B. (2020). Bank transaction data modeling by optimized hybrid machine learning merged with ARIMA. Journal of Management Analytics, 1–25.

    Google Scholar 

  11. Vafeiadis, T., Dimitriou, N., Ioannidis, D., Wotherspoon, T., Tinker, G., & Tzovaras, D. (2018). A framework for inspection of dies attachment on PCB utilizing machine learning techniques. Journal of Management Analytics, 5(2).

    Google Scholar 

  12. Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56.

    Google Scholar 

  13. Gawehn, E., Hiss, J. A., & Schneider, G. (2016). Deep learning in drug discovery. Molecular Informatics, 35(1), 3–14.

    Google Scholar 

  14. Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838.

    Google Scholar 

  15. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C., & Collins, J. J. (2018). Next-generation machine learning for biological networks. Cell, 173(7), 1581–1592.

    Google Scholar 

  16. Gormley, A. J., & Webb, M. A. (2021). Machine learning in combinatorial polymer chemistry. Nature Reviews Materials, 6(8), 642–644.

    Google Scholar 

  17. Isayev, O. (2022). Machine-learning-guided discovery of 19F MRI agents enabled by automated copolymer synthesis. In APS March Meeting (Vol. 67, No. 3).

    Google Scholar 

  18. Anderson, D. G., Lynn, D. M., & Langer, R. (2003). Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angewandte Chemie, 115(27), 3261–3266.

    Google Scholar 

  19. Tamasi, M., Kosuri, S., DiStefano, J., Chapman, R., & Gormley, A. J. (2020). Automation of controlled/living radical polymerization. Advanced Intelligent Systems, 2(2), 1900126.

    Google Scholar 

  20. Galant, O., Bae, S., Silberstein, M. N., & Diesendruck, C. E. (2020). Highly stretchable polymers: mechanical properties improvement by balancing intra-and intermolecular interactions. Advanced Functional Materials, 30(18), 1901806.

    Google Scholar 

  21. Statt, A., Kleeblatt, D. C., & Reinhart, W. F. (2021). Unsupervised learning of sequence-specific aggregation behaviour for a model copolymer. Soft Matter, 17(33), 7697–7707.

    Google Scholar 

  22. Statt, A. (2021). Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA Unsupervised learning of sequence-specific aggregation behaviour for model copolymers.

    Google Scholar 

  23. Grzybowski, B. A., Bishop, K. J., Kowalczyk, B., & Wilmer, C. E. (2009). The ‘wired’ universe of organic chemistry. Nature Chemistry, 1(1), 31–36.

    Google Scholar 

  24. Duschatko, B. R., & Vandermause, J. P., Molinari, N. (2022). Active learning of many-body transferable coarse-grained interactions in polymers. In APS March Meeting (Vol. 67).

    Google Scholar 

  25. Wang, C. C., Pilania, G., Boggs, S. A., Kumar, S., Breneman, C., & Ramprasad, R. (2014). Computational strategies for polymer dielectrics design. Polymer, 55(4), 979–988.

    Google Scholar 

  26. Venkatraman, V., & Alsberg, B. K. (2018). Designing high-refractive index polymers using materials informatics. Polymers, 10(1), 103.

    Google Scholar 

  27. Patel, S. J., Sanjana, N. E., Kishton, R. J., Eidizadeh, A., Vodnala, S. K., Cam, M., Gartner, J. J., Jia, L., Steinberg, S. M., Yamamoto, T. N., & Merchant, A. S. (2017). Identification of essential genes for cancer immunotherapy. Nature, 548(7669), 537–542.

    Google Scholar 

  28. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). Machine learning in materials informatics: Recent applications and prospects. Computational Materials, 3(1), 1–13.

    Google Scholar 

  29. Tashie-Lewis, B. C., & Nnabuife, S. G. (2021). Hydrogen production, distribution, storage and power conversion in a hydrogen economy-a technology review. Chemical Engineering Journal Advances, 8, 100172.

    Google Scholar 

  30. Woo, H. G., & Tilley, T. D. (1989). Dehydrogenative polymerization of silanes to polysilanes by zirconocene and hafnocene catalysts. A new polymerization mechanism. Journal of the American Chemical Society, 111(20), 8043–8044.

    Google Scholar 

  31. Hirscher, M., Yartys, V. A., Baricco, M., von Colbe, J. B., Blanchard, D., Bowman, R. C., Jr., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., & Cho, Y. W. (2020). Materials for hydrogen-based energy storage-past, recent progress and future outlook. Journal of Alloys and Compounds, 827, 153548.

    Google Scholar 

  32. Anderson, R., Biong, A., & Gómez-Gualdrón, D. A. (2020). Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model. Journal of Chemical Theory and Computation, 16(2), 1271–1283.

    Google Scholar 

  33. Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown, G. W., Jr., Sasaki, T., Itoh, M., & Manning, J. (2017). Demonstration of the Allam cycle: An update on the development status of a high efficiency supercritical carbon dioxide power process employing full carbon capture. Energy Procedia, 114, 5948–5966.

    Google Scholar 

  34. Ferguson, A. L. (2018). ACS central science virtual issue on machine learning. ACS Central Science, 4(8), 938–941.

    Google Scholar 

  35. Ghosh, K., Stuke, A., Todorović, M., Jørgensen, P. B., Schmidt, M. N., Vehtari, A., & Rinke, P. (2019). Machine learning: deep learning spectroscopy: Neural networks for molecular excitation spectra. Advanced Science, 6(9), 1970053.

    Google Scholar 

  36. Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z. W., Liu, C., Pan, H., Li, S., Wen, Y., & Yan, Q. (2022). Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries. Advanced Materials, 34(25), 2101474.

    Google Scholar 

  37. George, J., & Hautier, G. (2021). Chemist versus machine: Traditional knowledge versus machine learning techniques. Trends in Chemistry, 3(2), 86–95.

    Google Scholar 

  38. Liu, Y., Guo, B., Zou, X., Li, Y., & Shi, S. (2020). Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Materials, 31, 434–450.

    Google Scholar 

  39. Chen, C. T., & Gu, G. X. (2019). Machine learning for composite materials. MRS Communications, 9(2), 556–566.

    Google Scholar 

  40. Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102–127.

    Google Scholar 

  41. Strzelecki, M., & Badura, P. (2022). Machine learning for biomedical application. Applied Sciences, 12(4), 2022.

    Google Scholar 

  42. Melocchi, A., Uboldi, M., Cerea, M., Foppoli, A., Maroni, A., Moutaharrik, S., Palugan, L., Zema, L., & Gazzaniga, A. (2020). A graphical review on the escalation of fused deposition modeling (FDM) 3D printing in the pharmaceutical field. Journal of Pharmaceutical Sciences, 109(10), 2943–2957.

    Google Scholar 

  43. Invernizzi, M., Turri, S., Levi, M., & Suriano, R. (2018). 4D printed thermally activated self-healing and shape memory polycaprolactone based polymers. European Polymer Journal, 101, 169–176.

    Google Scholar 

  44. Haleem, A., Javaid, M., & Vaishya, R. (2019). 5D printing and its expected applications in orthopaedics. Journal of Clinical Orthopaedics Trauma, 10(4), 809–810.

    Google Scholar 

  45. Ghilan, A., Chiriac, A. P., Nita, L. E., Rusu, A. G., Neamtu, I., & Chiriac, V. M. (2020). Trends in 3D printing processes for biomedical field: Opportunities and challenges. Journal of Polymers and the Environment, 28(5), 1345–1367.

    Google Scholar 

  46. Statt, A., Kleeblatt, D. C., & Reinhart, W. F. (2021). Unsupervised learning of sequence-specific aggregation behavior for a model copolymer. Soft Matter, 17(33), 7697–7707. https://doi.org/10.1039/D1SM01012C

  47. Chen, L., Venkatram, S., Kim, C., Batra, R., Chandrasekaran, A., & Ramprasad, R. (2019) Electrochemical stability window of polymeric electrolytes. Chemistry of Materials, 31(12) 4598–4604. https://doi.org/10.1021/acs.chemmater.9b01553

  48. Wu, Y., Guo, J., Sun, R. and Min, J., 2020. Machine learning for accelerating the discovery of high-performance donor/acceptor pairs in non-fullerene organic solar cells. npj Computational Materials, 6(1), 120. https://doi.org/10.1038/s41524-020-00388-2

  49. Wu, K., Sukumar, N., Lanzillo, N. A., Wang, C., “Rampi” Ramprasad, R., Ma., Baldwin, A. F, Sotzing, G., Breneman, C. (2016). Prediction of polymer properties using infinite chain descriptors (ICD) and machine learning: Toward optimized dielectric polymeric materials. Journal of Polymer Science Part B: Polymer Physics, 54(20), 2082–2091. https://doi.org/10.1002/polb.24117

  50. Borboudakis, G., Stergiannakos, T., Frysali, M., Klontzas, E., Tsamardinos, I., & Froudakis, G. E. (2017). Chemically intuited, large-scale screening of MOFs by machine learning techniques. npj Computational Materials, 3(1), 40. https://doi.org/10.1038/s41524-017-0045-8

  51. Takahashi, H., Tampo, H., Arai, Y., Inoue, Y., & Kawashima, H. (2017). Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy. PloS one, 12(6), e0179790. https://doi.org/10.1371/journal.pone.0179790

  52. Ward, L., Agrawal, A., Choudhary, A., & Wolverton, C. (2016). A general-purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials, 2(1), 1–7. https://doi.org/10.1038/npjcompumats.2016.28

  53. Sonatkar, J., Kandasubramanian, B., & Ismail, S. O. (2022). 4D printing: Pragmatic progression in biofabrication. European Polymer Journal, 111128. https://doi.org/10.1016/j.eurpolymj.2022.111128

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vignesh, R., Balasubramani, V., Sridhar, T.M. (2023). Machine Learning for Next‐Generation Functional Materials. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_9

Download citation

Publish with us

Policies and ethics