Skip to main content

A Review of the High-Performance Gas Sensors Using Machine Learning

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials
  • 690 Accesses

Abstract

High-performance gas sensors are of great importance to accurately identify/detect pollutant gases and monitor their concentrations in the environment to ensure human safety in daily life and production. Machine-learning techniques have been used to successfully improve gas sensing performances of gas sensors leveraging large onsite data sets generated by them. A simple process is introduced to show the typical approach to collect the features from sensing response curves and conduct a machine-learning algorithm to further analyze the data set. The improved gas sensing performances of the machine-learning-enabled sensors reported recently are summarized and compared, especially regarding selectivity and long-term stability (drift compensation). Furthermore, the expanded applications of a gas sensor or sensor array under machine-learning algorithms were discussed and reviewed. In addition, the possible challenges/prospects are emphasized and discussed as well. Our review further indicated that machine-learning techniques are effective strategies to successfully improve the gas sensing behavior of a single gas sensor or sensor array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., Wong, C. K., Yuan, C. A., & Zhang, G. (2013). Nanowire-based gas sensors. Sensors and Actuators, B: Chemical Sensors and Materials, 177, 178–195.

    Article  ADS  Google Scholar 

  2. Tian, X., Cui, X., Lai, T., Ren, J., Yang, Z., Xiao, M., Wang, B., Xiao, X., & Wang, Y. (2021). Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review, Nano. Materials Science, 3, 390–403.

    Google Scholar 

  3. Cui, S., Pu, H., Wells, S. A., Wen, Z., Mao, S., Chang, J., Hersam, M. C., & Chen, J. (2015). Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 6, 8632.

    Article  ADS  Google Scholar 

  4. van den Broek, J., Abegg, S., Pratsinis, S. E., & Güntner, A. T. (2019). Highly selective detection of methanol over ethanol by a handheld gas sensor. Nature Communications, 10, 4220.

    Article  ADS  Google Scholar 

  5. Mehdi Pour, M., Lashkov, A., Radocea, A., Liu, X., Sun, T., Lipatov, A., Korlacki, R. A., Shekhirev, M., Aluru, N. R., Lyding, J. W., Sysoev, V., & Sinitskii, A. (2017). Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nature Communications, 8, 820.

    Google Scholar 

  6. Wang, J., Ren, Y., Liu, H., Li, Z., Liu, X., Deng, Y., & Fang, X. (2022). Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Advanced Materials, 34, 2104958.

    Article  Google Scholar 

  7. Jeong, S. Y., Kim, J. S., & Lee, J. H. (2020). Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Advanced Materials, 32, 2002075.

    Article  Google Scholar 

  8. Krishna, K. G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S., & Joshi, D. (2022). Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical, 113578.

    Google Scholar 

  9. Patial, P., & Deshwal, M. (2022). Selectivity and sensitivity property of metal oxide semiconductor based gas sensor with dopants variation: A review. Transactions on Electrical and Electronic, 23, 6–18.

    Article  Google Scholar 

  10. Yoon, J.-W., & Lee, J.-H. (2017). Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: Recent progress and future perspectives. Lab on a Chip, 17, 3537–3557.

    Article  Google Scholar 

  11. Wei, S., Li, Z., John, A., Karawdeniya, B. I., Li, Z., Zhang, F., Vora, K., Tan, H. H., Jagadish, C., & Murugappan, K. (2022). Semiconductor nanowire arrays for high-performance miniaturized chemical sensing. Advanced Functional Materials, 32, 2107596.

    Article  Google Scholar 

  12. Yuan, Z., Yang, F., Meng, F., Zuo, K., & Li, J. (2021). Research of low-power MEMS-based micro hotplates gas sensor: A review. IEEE Sensors Journal, 21, 18368–18380.

    Article  ADS  Google Scholar 

  13. Asri, M. I. A., Hasan, M. N., Fuaad, M. R. A., Yunos, Y. M., & Ali, M. S. M. (2021). MEMS gas sensors: A review. IEEE Sensors Journal, 21, 18381–18397.

    Article  ADS  Google Scholar 

  14. Gao, X., & Zhang, T. (2018). An overview: Facet-dependent metal oxide semiconductor gas sensors. Sensors and Actuators, B: Chemical Sensors and Materials, 277, 604–633.

    Article  Google Scholar 

  15. Wang, J., Shen, H., Xia, Y., & Komarneni, S. (2021). Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceramics International, 47, 7353–7368.

    Article  Google Scholar 

  16. Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., Hu, P., Yang, C., Grundmann, M., & Liu, X. (2019). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 6, 470–506.

    Article  Google Scholar 

  17. Rzaij, J. M., & Abass, A. M. (2020). Review on: TiO2 thin film as a metal oxide gas sensor. Journal of Chemical Reviews, 2, 114–121.

    Article  Google Scholar 

  18. Liu, J., Zhang, L., Fan, J., Zhu, B., & Yu, J. (2021). Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sensors and Actuators, B: Chemical Sensors and Materials, 331, 129425.

    Article  Google Scholar 

  19. Bai, H., Guo, H., Wang, J., Dong, Y., Liu, B., Xie, Z., Guo, F., Chen, D., Zhang, R., & Zheng, Y. (2021). A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sensors and Actuators, B: Chemical Sensors and Materials, 337, 129783.

    Article  Google Scholar 

  20. Sui, N., Zhang, P., Zhou, T., & Zhang, T. (2021). Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure. Sensors and Actuators, B: Chemical Sensors and Materials, 336, 129612.

    Article  Google Scholar 

  21. Sharma, B., Sharma, A., & Myung, J.-H. (2021). Selective ppb-level NO2 gas sensor based on SnO2-boron nitride nanotubes. Sensors and Actuators, B: Chemical Sensors and Materials, 331, 129464.

    Article  Google Scholar 

  22. Pravarthana, D., Tyagi, A., Jagadale, T., Prellier, W., & Aswal, D. (2021). Highly sensitive and selective H2S gas sensor based on TiO2 thin films. Applied Surface Science, 549, 149281.

    Article  Google Scholar 

  23. Morais, P. V., Suman, P. H., Silva, R. A., & Orlandi, M. O. (2021). High gas sensor performance of WO3 nanofibers prepared by electrospinning. Journal of Alloys and Compounds, 864, 158745.

    Article  Google Scholar 

  24. Ling, W., Zhu, D., Pu, Y., & Li, H. (2022). The ppb-level formaldehyde detection with UV excitation for yolk-shell MOF-derived ZnO at room temperature. Sensors and Actuators, B: Chemical Sensors and Materials, 355, 131294.

    Article  Google Scholar 

  25. Li, Z., Lou, C., Lei, G., Lu, G., Pan, H., Liu, X., & Zhang, J. (2022). Atomic layer deposition of Rh/ZnO nanostructures for anti-humidity detection of trimethylamine. Sensors and Actuators, B: Chemical Sensors and Materials, 355, 131347.

    Article  Google Scholar 

  26. Yang, W., Chen, H., & Lu, J. (2021). Assembly of stacked In2O3 nanosheets for detecting trace NO2 with ultrahigh selectivity and promoted recovery. Applied Surface Science, 539, 148217.

    Article  Google Scholar 

  27. Chen, L., Song, Y., Liu, W., Dong, H., Wang, D., Liu, J., Liu, Q., & Chen, X. (2022). MOF-based nanoscale Pt catalyst decorated SnO2 porous nanofibers for acetone gas detection. Journal of Alloys and Compounds, 893, 162322.

    Article  Google Scholar 

  28. Li, T., Zhang, D., Pan, Q., Tang, M., & Yu, S. (2022). UV enhanced NO2 gas sensing at room temperature based on coral-like tin diselenide/MOFs-derived nanoflower-like tin dioxide heteronanostructures. Sensors and Actuators, B: Chemical Sensors and Materials, 355, 131049.

    Article  Google Scholar 

  29. Song, Y. G., Park, J. Y., Suh, J. M., Shim, Y.-S., Yi, S. Y., Jang, H. W., Kim, S., Yuk, J. M., Ju, B.-K., & Kang, C.-Y. (2018). Heterojunction based on Rh-decorated WO3 nanorods for morphological change and gas sensor application using the transition effect. Chemistry of Materials, 31, 207–215.

    Article  Google Scholar 

  30. Periyasamy, M., & Kar, A. (2020). Modulating the properties of SnO2 nanocrystals: Morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. Journal of Materials Chemistry C, 8, 4604–4635.

    Article  Google Scholar 

  31. Bai, S., Guo, J., Shu, X., Xiang, X., Luo, R., Li, D., Chen, A., & Liu, C. C. (2017). Surface functionalization of Co3O4 hollow spheres with ZnO nanoparticles for modulating sensing properties of formaldehyde. Sensors and Actuators, B: Chemical Sensors and Materials, 245, 359–368.

    Article  Google Scholar 

  32. Dong, C., Zhao, R., Yao, L., Ran, Y., Zhang, X., & Wang, Y. (2020). A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. Journal of Alloys and Compounds, 820, 153194.

    Article  Google Scholar 

  33. Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering B, 229, 206–217.

    Article  Google Scholar 

  34. Korotcenkov, G. (2007). Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering B, 139, 1–23.

    Article  Google Scholar 

  35. Li, P., Cao, C., Shen, Q., Bai, B., Jin, H., Yu, J., Chen, W., & Song, W. (2021). Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sensors and Actuators, B: Chemical Sensors and Materials, 339, 129886.

    Article  Google Scholar 

  36. Wang, Y., Cui, Y., Meng, X., Zhang, Z., & Cao, J. (2021). A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surf. Interfaces, 24, 101110.

    Article  Google Scholar 

  37. Li, H., Wu, C.-H., Liu, Y.-C., Yuan, S.-H., Chiang, Z.-X., Zhang, S., & Wu, R.-J. (2021). Mesoporous WO3–TiO2 heterojunction for a hydrogen gas sensor. Sensors and Actuators, B: Chemical Sensors and Materials, 341, 130035.

    Article  Google Scholar 

  38. Liu, A., Lv, S., Jiang, L., Liu, F., Zhao, L., Wang, J., Hu, X., Yang, Z., He, J., & Wang, C. (2021). The gas sensor utilizing polyaniline/MoS2 nanosheets/SnO2 nanotubes for the room temperature detection of ammonia. Sensors and Actuators, B: Chemical Sensors and Materials, 332, 129444.

    Article  Google Scholar 

  39. Yaqoob, U., & Younis, M. I. (2021). Chemical gas sensors: Recent developments, challenges, and the potential of machine learning-A review. Sensors, 21, 2877.

    Article  ADS  Google Scholar 

  40. Ha, N., Xu, K., Ren, G., Mitchell, A., & Ou, J. Z. (2020). Machine learning-enabled smart sensor systems. Advanced Intelligent Systems, 2, 2000063.

    Article  Google Scholar 

  41. Ye, Z., Liu, Y., & Li, Q. (2021). Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors, 21, 7620.

    Article  ADS  Google Scholar 

  42. Acharyya, S., Nag, S., Guha, P. K. (2022). Ultra-selective tin oxide-based chemiresistive gas sensor employing signal transform and machine learning techniques. Analytica Chimica Acta, 339996.

    Google Scholar 

  43. Tonezzer, M. (2019). Selective gas sensor based on one single SnO2 nanowire. Sensors and Actuators, B: Chemical Sensors and Materials, 288, 53–59.

    Article  Google Scholar 

  44. Khan, M. A. H., Thomson, B., Debnath, R., Motayed, A., & Rao, M. V. (2020). Nanowire-based sensor array for detection of cross-sensitive gases using PCA and machine learning algorithms. IEEE Sensors Journal, 20, 6020–6028.

    Article  ADS  Google Scholar 

  45. Leite, L. S., Visani, V., Marques, P. C. F., Seabra, M. A. B. L., Oliveira, N. C. L., Gubert, P., Medeiros, V. W. C. D., Albuquerque, J. O. D., & Lima Filho, J. L. D. (2021). Design and implementation of an electronic nose system for real-time detection of marijuana. Instrumentation Science and Technology, 49, 471–486.

    Google Scholar 

  46. Calderon-Santoyo, M., Chalier, P., Chevalier-Lucia, D., Ghommidh, C., & Ragazzo-Sanchez, J. A. (2010). Identification of Saccharomyces cerevisiae strains for alcoholic fermentation by discriminant factorial analysis on electronic nose signals. Electronic Journal of Biotechnology, 13, 8–9.

    Article  Google Scholar 

  47. Bermak, A., Belhouari, S. B., Shi, M., & Martinez, D. (2006). Pattern recognition techniques for odor discrimination in gas sensor array. Encyclopedia of Sensors, 10, 1–17.

    Google Scholar 

  48. Liu, T., Zhang, W., McLean, P., Ueland, M., Forbes, S. L., & Su, S. W. (2018). Electronic nose-based odor classification using genetic algorithms and fuzzy support vector machines. International Journal of Fuzzy Systems, 20, 1309–1320.

    Article  Google Scholar 

  49. Acharyya, S., Nag, S., & Guha, P. K. (2020). Selective detection of VOCs with WO3 nanoplates-based single chemiresistive sensor device using machine learning algorithms. IEEE Sensors Journal, 21, 5771–5778.

    Article  ADS  Google Scholar 

  50. Acharyya, S., Jana, B., Nag, S., Saha, G., & Guha, P. K. (2020). Single resistive sensor for selective detection of multiple VOCs employing SnO2 hollowspheres and machine learning algorithm: A proof of concept. Sensors and Actuators, B: Chemical Sensors and Materials, 321, 128484.

    Article  Google Scholar 

  51. Lee, J., Jung, Y., Sung, S.-H., Lee, G., Kim, J., Seong, J., Shim, Y.-S., Jun, S. C., & Jeon, S. (2021). High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. Journal of Materials Chemistry A, 9, 1159–1167.

    Article  Google Scholar 

  52. Dennler, N., Rastogi, S., Fonollosa, J., van Schaik, A., & Schmuker, M. (2022). Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks. Sensors and Actuators, B: Chemical Sensors and Materials, 361, 131668.

    Article  Google Scholar 

  53. Tonezzer, M. (2021). Single nanowire gas sensor able to distinguish fish and meat and evaluate their degree of freshness. Chemosensors, 9, 249.

    Article  Google Scholar 

  54. Abe, H., Kimura, Y., Ma, T., Tadaki, D., Hirano-Iwata, A., & Niwano, M. (2020). Response characteristics of a highly sensitive gas sensor using a titanium oxide nanotube film decorated with platinum nanoparticles. Sensors and Actuators, B: Chemical Sensors and Materials, 321, 128525.

    Article  Google Scholar 

  55. Isik, E., Tasyurek, L. B., Isik, I., & Kilinc, N. (2022). Synthesis and analysis of TiO2 nanotubes by electrochemical anodization and machine learning method for hydrogen sensors. Microelectronic Engineering, 262, 111834.

    Article  Google Scholar 

  56. Kroutil, J., Laposa, A., Ahmad, A., Voves, J., Povolny, V., Klimsa, L., Davydova, M., & Husak, M. (2022). A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification. Beilstein Journal of Nanotechnology, 13, 411–423.

    Article  Google Scholar 

  57. Shiba, K., Tamura, R., Sugiyama, T., Kameyama, Y., Koda, K., Sakon, E., Minami, K., Ngo, H. T., Imamura, G., & Tsuda, K. (2018). Functional nanoparticles-coated nanomechanical sensor arrays for machine learning-based quantitative odor analysis. ACS Sensors, 3, 1592–1600.

    Article  Google Scholar 

  58. Aliramezani, M., Norouzi, A., & Koch, C. R. (2020). A grey-box machine learning based model of an electrochemical gas sensor. Sensors and Actuators, B: Chemical Sensors and Materials, 321, 128414.

    Article  Google Scholar 

  59. Laref, R., Losson, E., Sava, A., & Siadat, M. (2019). On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications. Chemometrics and Intelligent Laboratory, 184, 22–27.

    Article  Google Scholar 

  60. Ogbeide, O., Bae, G., Yu, W., Morrin, E., Song, Y., Song, W., Li, Y., Su, B. L., An, K. S., & Hasan, T. (2022). Inkjet‐printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Advanced Functional Materials, 2113348.

    Google Scholar 

  61. Huang, C.-H., Zeng, C., Wang, Y.-C., Peng, H.-Y., Lin, C.-S., Chang, C.-J., & Yang, H.-Y. (2018). A study of diagnostic accuracy using a chemical sensor array and a machine learning technique to detect lung cancer. Sensors, 18, 2845.

    Article  ADS  Google Scholar 

  62. Barsan, N., Koziej, D., & Weimar, U. (2007). Metal oxide-based gas sensor research: How to? Sensors and Actuators, B: Chemical Sensors and Materials, 121, 18–35.

    Article  Google Scholar 

  63. Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal oxide gas sensors: Sensitivity and influencing factors. Sensors, 10, 2088–2106.

    Article  ADS  Google Scholar 

  64. Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors, 10, 5469–5502.

    Article  ADS  Google Scholar 

  65. Guo, S., Yang, D., Li, B., Dong, Q., Li, Z., Zaghloul, M. E. (2019). An artificial intelligent flexible gas sensor based on ultra-large area MoSe2 nanosheet. In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 884–887). IEEE.

    Google Scholar 

  66. Tonezzer, M., Izidoro, S. C., Moraes, J. P. A., & Dang, L. T. T. (2019). Improved gas selectivity based on carbon modified SnO2 nanowires. Frontiers in Materials, 6, 277.

    Article  ADS  Google Scholar 

  67. Tonezzer, M., Le, D. T. T., Iannotta, S., & Van Hieu, N. (2018). Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sensors and Actuators, B: Chemical Sensors and Materials, 277, 121–128.

    Article  Google Scholar 

  68. Yaqoob, U., Lenz, W. B., Alcheikh, N., Jaber, N., & Younis, M. I. (2022). Highly selective multiple gases detection using a thermal-conductivity-based MEMS resonator and machine learning. IEEE Sensors Journal, 22, 19858–19866.

    Article  ADS  Google Scholar 

  69. Tonezzer, M., Kim, J.-H., Lee, J.-H., Iannotta, S., & Kim, S. S. (2019). Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sensors and Actuators, B: Chemical Sensors and Materials, 281, 670–678.

    Article  Google Scholar 

  70. Huang, S., Croy, A., Panes-Ruiz, L. A., Khavrus, V., Bezugly, V., Ibarlucea, B., & Cuniberti, G. (2022). Machine learning-enabled smart gas sensing platform for identification of industrial gases. Advanced Intelligent Systems, 4, 2200016.

    Article  Google Scholar 

  71. Wang, T., Ma, H., Jiang, W., Zhang, H., Zeng, M., Yang, J., Wang, X., Liu, K., Huang, R., & Yang, Z. (2021). Type discrimination and concentration prediction towards ethanol using a machine learning-enhanced gas sensor array with different morphology-tuning characteristics. Physical Chemistry Chemical Physics: PCCP, 23, 23933–23944.

    Article  ADS  Google Scholar 

  72. Kanaparthi, S., & Singh, S. G. (2021). Discrimination of gases with a single chemiresistive multi-gas sensor using temperature sweeping and machine learning. Sensors and Actuators, B: Chemical Sensors and Materials, 348, 130725.

    Article  Google Scholar 

  73. Viet, N. N., Dang, T. K., Phuoc, P. H., Chien, N. H., Hung, C. M., Hoa, N. D., Van Duy, N., Van Toan, N., Son, N. T., & Van Hieu, N. (2021). MoS2 nanosheets-decorated SnO2 nanofibers for enhanced SO2 gas sensing performance and classification of CO, NH3 and H2 gases. Analytica Chimica Acta, 1167, 338576.

    Article  Google Scholar 

  74. Van Toan, N., Hung, C. M., Hoa, N. D., Van Duy, N., Le, D. T. T., Hoa, N. T. T., Viet, N. N., Phuoc, P. H., & Van Hieu, N. (2021). Enhanced NH3 and H2 gas sensing with H2S gas interference using multilayer SnO2/Pt/WO3 nanofilms. Journal of Hazardous Materials, 412, 125181.

    Article  Google Scholar 

  75. Hayasaka, T., Lin, A., Copa, V. C., Lopez, L. P., Loberternos, R. A., Ballesteros, L. I. M., Kubota, Y., Liu, Y., Salvador, A. A., & Lin, L. (2020). An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsystems & Nanoengineering, 6, 50.

    Article  ADS  Google Scholar 

  76. Krivetskiy, V. V., Andreev, M. D., Efitorov, A. O., & Gaskov, A. M. (2021). Statistical shape analysis pre-processing of temperature modulated metal oxide gas sensor response for machine learning improved selectivity of gases detection in real atmospheric conditions. Sensors and Actuators, B: Chemical Sensors and Materials, 329, 129187.

    Article  Google Scholar 

  77. Bae, G., Kim, M., Song, W., Myung, S., Lee, S. S., & An, K.-S. (2021). Impact of a diverse combination of metal oxide gas sensors on machine learning-based gas recognition in mixed gases. ACS Omega, 6, 23155–23162.

    Article  Google Scholar 

  78. Kang, M., Cho, I., Park, J., Jeong, J., Lee, K., Lee, B., Del Orbe Henriquez, D., Yoon, K., & Park, I. (2022). High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sensors, 7, 430–440.

    Google Scholar 

  79. Xu, L., He, J., Duan, S., Wu, X., & Wang, Q. (2016). Comparison of machine learning algorithms for concentration detection and prediction of formaldehyde based on electronic nose. Sensor Review, 36, 207–216.

    Article  Google Scholar 

  80. Ren, W., Zhao, C., Liu, Y., & Wang, F. (2021). An In2O3 nanotubes based gas sensor array combined with machine learning algorithms for trimethylamine detection. In 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 1042–1046). IEEE.

    Google Scholar 

  81. Liu, Y., Zhao, C., Lin, J., Gong, H., & Wang, F. (2020). Classification and concentration prediction of VOC gases based on sensor array with machine learning algorithms. In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS) (pp. 295–300). IEEE.

    Google Scholar 

  82. Thorson, J., Collier-Oxandale, A., & Hannigan, M. (2019). Using a low-cost sensor array and machine learning techniques to detect complex pollutant mixtures and identify likely sources. Sensors, 19, 3723.

    Article  ADS  Google Scholar 

  83. Wei, G., Zhao, J., Yu, Z., Feng, Y., Li, G., & Sun, X. (2018). An effective gas sensor array optimization method based on random forest. 2018 IEEE Sensors (pp. 1–4). IEEE.

    Google Scholar 

  84. Itoh, T., Koyama, Y., Shin, W., Akamatsu, T., Tsuruta, A., Masuda, Y., & Uchiyama, K. (2020). Selective detection of target volatile organic compounds in contaminated air using sensor array with machine learning: Aging notes and mold smells in simulated automobile interior contaminant gases. Sensors, 20, 2687.

    Article  ADS  Google Scholar 

  85. Zhao, W., Bhushan, A., Santamaria, A. D., Simon, M. G., & Davis, C. E. (2008). Machine learning: A crucial tool for sensor design. Algorithms, 1, 130–152.

    Article  Google Scholar 

  86. Hanga, K. M., & Kovalchuk, Y. (2019). Machine learning and multi-agent systems in oil and gas industry applications: A survey. Computer Science Review, 34, 100191.

    Article  Google Scholar 

  87. Venketeswaran, A., Lalam, N., Wuenschell, J., Ohodnicki, P. R., Jr., Badar, M., Chen, K. P., Lu, P., Duan, Y., Chorpening, B., & Buric, M. (2022). Recent advances in machine learning for fiber optic sensor applications. Advanced Intelligent Systems, 4, 2100067.

    Article  Google Scholar 

  88. Liu, T., Li, D., Chen, J., Chen, Y., Yang, T., & Cao, J. (2018). Gas-sensor drift counteraction with adaptive active learning for an electronic nose. Sensors, 18, 4028.

    Article  ADS  Google Scholar 

  89. ur Rehman, A., Bermak, A., & Hamdi, M. (2019). Shuffled frog-leaping and weighted cosine similarity for drift correction in gas sensors. IEEE Sensors Journal, 19, 12126–12136.

    Google Scholar 

  90. Amarnath, B., Balamurugan, S., & Alias, A. (2016). Review on feature selection techniques and its impact for effective data classification using UCI machine learning repository dataset. Journal of Engineering Science and Technology, 11, 1639–1646.

    Google Scholar 

  91. Frank, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml

  92. Jiang, Z., Xu, P., Du, Y., Yuan, F., & Song, K. (2021). Balanced distribution adaptation for metal oxide semiconductor gas sensor array drift compensation. Sensors, 21, 3403.

    Article  ADS  Google Scholar 

  93. Dong, X., Han, S., Wang, A., & Shang, K. (2021). Online inertial machine learning for sensor array long-term drift compensation. Chemosensors, 9, 353.

    Article  Google Scholar 

  94. Das, P., Manna, A., Ghoshal, S. (2020). Gas sensor drift compensation by ensemble of classifiers using extreme learning machine. In 2020 International Conference on Renewable Energy Integration into Smart Grids: A Multidisciplinary Approach to Technology Modelling and Simulation (ICREISG) (pp. 197–201). IEEE.

    Google Scholar 

  95. Schroeder, V., Evans, E. D., Wu, Y.-C.M., Voll, C.-C.A., McDonald, B. R., Savagatrup, S., & Swager, T. M. (2019). Chemiresistive sensor array and machine learning classification of food. ACS Sensors, 4, 2101–2108.

    Article  Google Scholar 

  96. Tan, J., Balasubramanian, B., Sukha, D., Ramkissoon, S., & Umaharan, P. (2019). Sensing fermentation degree of cocoa (Theobroma cacao L.) beans by machine learning classification models based electronic nose system. Journal of Food Process Engineering, 42, e13175.

    Google Scholar 

  97. Enériz, D., Medrano, N., & Calvo, B. (2021). An FPGA-based machine learning tool for in-situ food quality tracking using sensor fusion. Biosensors, 11, 366.

    Article  Google Scholar 

  98. Fang, C., Li, H.-Y., Li, L., Su, H.-Y., Tang, J., Bai, X., & Liu, H. (2022). Smart electronic nose enabled by an all-feature olfactory algorithm. Advanced Intelligent Systems, 4, 2200074.

    Article  Google Scholar 

  99. Astuti, S. D., Tamimi, M. H., Pradhana, A. A., Alamsyah, K. A. Purnobasuki, H., Khasanah, M., Susilo, Y., Triyana, K., Kashif, M., & Syahrom, A. (2021). Gas sensor array to classify the chicken meat with E. coli contaminant by using random forest and support vector machine. Biosensors and Bioelectronics, X(9), 100083.

    Google Scholar 

  100. Al Isyrofie, A. I. F., Kashif, M., Aji, A. K., Aidatuzzahro, N., Rahmatillah, A., Susilo, Y., Syahrom, A., & Astuti, S. D. (2022). Odor clustering using a gas sensor array system of chicken meat based on temperature variations and storage time. Sensing and Bio-Sensing Research, 37, 100508.

    Google Scholar 

  101. Saeed, R., Feng, H., Wang, X., Zhang, X., & Fu, Z. (2022). Fish quality evaluation by sensor and machine learning: A mechanistic review. Food Control, 137, 108902.

    Article  Google Scholar 

  102. Lumogdang, C. F. D., Wata, M. G., Loyola, S. J. S., Angelia, R. E., Angelia, H. L. P. (2019). Supervised machine learning approach for pork meat freshness identification. In Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications, Association for Computing Machinery (pp. 1–6).

    Google Scholar 

  103. Yang, H.-Y., Wang, Y.-C., Peng, H.-Y., & Huang, C.-H. (2021). Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Science and Reports, 11, 1–9.

    ADS  Google Scholar 

  104. Zimmerman, N., Presto, A. A., Kumar, S. P., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., & Subramanian, R. (2018). A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmospheric Measurement Techniques, 11, 291–313.

    Article  ADS  Google Scholar 

  105. Wei, P., Sun, L., Anand, A., Zhang, Q., Huixin, Z., Deng, Z., Wang, Y., & Ning, Z. (2020). Development and evaluation of a robust temperature sensitive algorithm for long term NO2 gas sensor network data correction. Atmospheric Environment, 230, 117509.

    Article  Google Scholar 

  106. Wusiman, M., & Taghipour, F. (2022). Methods and mechanisms of gas sensor selectivity. Critical Reviews in Solid State, 47, 416–435.

    Article  ADS  Google Scholar 

  107. Jian, Y., Hu, W., Zhao, Z., Cheng, P., Haick, H., Yao, M., & Wu, W. (2020). Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Letters, 12, 1–43.

    Article  Google Scholar 

  108. Al-Hashem, M., Akbar, S., & Morris, P. (2019). Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A review. Sensors and Actuators, B: Chemical Sensors and Materials, 301, 126845.

    Article  Google Scholar 

  109. Zhao, S., Shen, Y., Yan, X., Zhou, P., Yin, Y., Lu, R., Han, C., Cui, B., & Wei, D. (2019). Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sensors and Actuators, B: Chemical Sensors and Materials, 286, 501–511.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51802109, 51972102, 52072115 and U21A20500), the Department of Education of Hubei Province (Grant no. D20202903) and the Department of Science and Technology of Hubei Province (Grant no. 2022CFB525).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulin Yang or Haoshuang Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, S., Lei, G., Xu, H., Lan, Z., Wang, Z., Gu, H. (2023). A Review of the High-Performance Gas Sensors Using Machine Learning. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_8

Download citation

Publish with us

Policies and ethics