Skip to main content

The Application of Novel Functional Materials to Machine Learning

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

Due to the numerous challenges associated with traditional methods of developing energy materials, such as low success probabilities, high time consumption, and high computational cost, screening advanced materials coupled with modeling of their quantitative structural-activity relationships has recently become one of the hot and trending topics in next-generation functional materials. As a result, new research concepts and technologies are required to promote the study and development of functional materials. With the recent advances in artificial intelligence and machine learning, there is a growing hope that data-driven materials research will change scientific findings and lead to the establishment of new paradigms for energy materials development. Machine learning (ML) is a powerful tool for extracting insights from multidimensional data quickly and efficiently. It provides a much-needed pathway for speeding up the research and investigation of novel materials in order to solve time-sensitive global concerns like climate change. Large datasets have made it possible to build machine learning algorithms for a variety of applications, such as experimental/device optimization and material discovery, in recent years. Furthermore, contemporary breakthroughs in data-driven materials engineering show that machine learning technology can help with not just the design and development of advanced energy materials, but also the discovery and deployment of these materials. The need and necessity of developing new energy materials in order to contribute to global carbon neutrality are discussed in this chapter. Following that, the most recent advancements in data-driven materials research and engineering are reviewed, including alkaline ion battery materials, photovoltaic materials, catalytic materials, and carbon dioxide capture materials. Finally, the remaining obstacles in the creation of new energy materials are discussed, as well as significant pointers to effective machine learning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, L., Gao, L., Kedzierski, M. A., & Hwang, Y. (2020).

    Google Scholar 

  2. Gao, P., Chen, Z., Gong, Y., Zhang, R., Liu, H., Tang, P., Chen, X., Passerini, S., & Liu, J. (2020). 10, 1903780.

    Google Scholar 

  3. Jurasz, J., Canales, F., Kies, A., Guezgouz, M., & Beluco, A. (2020). 195, 703–724.

    Google Scholar 

  4. Kang, Y., Li, L., & Li, B. (2021). 54, 72–88.

    Google Scholar 

  5. Kang, P., Liu, Z., Abou-Rachid, H., & Guo, H. (2020). 124, 5341–5351.

    Google Scholar 

  6. Neugebauer, J., & Hickel, T. (2013). 3, 438–448.

    Google Scholar 

  7. Himanen, L., Geurts, A., Foster, A., & Rinke, P. (2019). A. S. Perspectives.

    Google Scholar 

  8. Chen, A., Zhang, X., & Zhou, Z. J. (2020). 2, 553–576.

    Google Scholar 

  9. Wang, A. Y.-T., Murdock, R. J., Kauwe, S. K., Oliynyk, A. O., Gurlo, A., Brgoch, J., Persson, & Sparks, K. (2020). 32, 4954–4965.

    Google Scholar 

  10. Jablonka, K. M., Ongari, D., Moosavi, S. M., & Smit, B. (2020). 120, 8066–8129.

    Google Scholar 

  11. Altintas, C., Altundal, O. F., Keskin, S., & Yildirim, R. (2021). Modeling, 61, 2131–2146.

    Google Scholar 

  12. Barnett, J. W., Bilchak, C. R., Wang, Y., Benicewicz, B. C., Murdock, L. A., Bereau, T., & Kumar, S. K. (2020). 6, eaaz4301.

    Google Scholar 

  13. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). 559, 547–555.

    Google Scholar 

  14. Reymond, J. L. (2015). 48, 722–730.

    Google Scholar 

  15. Suzuki, Y., Hino, H., Hawai, T., Saito, K., Kotsugi, M., & Ono. K. (2020). 10, 1–11.

    Google Scholar 

  16. Liu, Y., Wu, J. M., Avdeev, M., & Shi, S. (2020). Simulations, 3, 1900215.

    Google Scholar 

  17. Gu, G. H., Noh, J., Kim, I., & Jung, Y. (2019). 7, 17096–17117.

    Google Scholar 

  18. Li, J., Lim, K., Yang, H., Ren, Z., Raghavan, S., Chen, P.-Y., Buonassisi, T., & Wang, X. (2020). 3, 393–432.

    Google Scholar 

  19. Chen, C., Zuo, Y., Ye, W., Li, X., & Deng, Z., Ong. (2020). 10, 1903242.

    Google Scholar 

  20. Correa-Baena, J.-P., Hippalgaonkar, K., van Duren, J., Jaffer, S., Chandrasekhar, V. R., Stevanovic, V., Wadia, C.,  Guha, S. & Buonassisi T. (2018). 2, 1410–1420.

    Google Scholar 

  21. Kudyshev, Z. A., Kildishev, A. V., Shalaev, V. M., & Boltasseva A., (2020). 7, 021407.

    Google Scholar 

  22. Wu, Z., Yang, T., Deng, Z., Huang, B., Liu, H., Wang, Y., Chen, Y., Stoddard, M. C., Li, L., & Zhu, Y. (2019). 8, 559–569.

    Google Scholar 

  23. Varma, V., Gerosa, D., Stein, L. C., Hébert, F., & Zhang, H., (2019). 122, 011101.

    Google Scholar 

  24. Martinez-Cantin, R., Tee, K., McCourt, M. (2018). 1722–1731.

    Google Scholar 

  25. Hase, F., Roch, L. M., Kreisbeck, C., & Aspuru-Guzik, A. J. (2018). 4, 1134–1145.

    Google Scholar 

  26. Janai, M. A. B., Woon, K. L., & Chan, C. (2018). 63, 257–266.

    Google Scholar 

  27. Kirkey, A., Luber, E. J., Cao, B., Olsen, B. C., & Buriak, J. (2020). Interfaces, 12, 54596–54607.

    Google Scholar 

  28. Cao, B., Adutwum, L. A., Oliynyk, A. O., Luber, E. J., Olsen, B. C., Mar, A., & Buriak. (2018). 12, 7434–7444.

    Google Scholar 

  29. Du, X., Lüer, L., Heumueller, T., Wagner, J., Berger, C., Osterrieder, T., Wortmann, J., Langner, S., Vongsaysy, U., & Bertrand, M. (2021). 5, 495–506.

    Google Scholar 

  30. Siemenn, A. E., Beveridge, M., Buonassisi, T., & Drori I. (2021).

    Google Scholar 

  31. Voznyy, O., Levina, L., Fan, J. Z., Askerka, M., Jain, A., Choi, M.-J., Ouellette, O., Todorović, P., Sagar, L. K., & Sargent, E. (2019). 13, 11122–11128.

    Google Scholar 

  32. Salley, D. S., Keenan, G. A., Long, D.-L., Bell, N. L., & Cronin, L. (2020). 6, 1587–1593.

    Google Scholar 

  33. Mekki-Berrada, F., Ren, Z., Huang, T., Wong, W. K., Zheng, F., Xie, J., Tian, I. P., Jayavelu, S., Mahfoud, Z., Bash, D., & Hippalgaonkar, K. (2021). 7, 1–10.

    Google Scholar 

  34. Li, Z., Najeeb, M. A., Alves, L., Sherman, A. Z., Shekar, V., Cruz Parrilla, P., Pendleton, I. M., Wang, W., Nega, P. W., & Zeller, M. (2020). 32, 5650–5663.

    Google Scholar 

  35. Burger, B., Maffettone, P. M., Gusev, V. V., Aitchison, C. M., Bai, Y., Wang, X., Li, X., Alston, B. M., Li, B., & Clowes, R. J. (2020). 583, 237–241.

    Google Scholar 

  36. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J., & Vignati, E. (2020).

    Google Scholar 

  37. Edström, K., Dominko, R., Fichtner, M., Perraud, S., Punckt, C., Asinari, P., Castelli, I., Christensen, R., Clark, S., & Grimaud, A. (2020). 2030, 60–61.

    Google Scholar 

  38. Gosens, J., Kåberger, T., & Wang, Y.  (2017). Engineering, 5, 141–155.

    Google Scholar 

  39. Erickson, L. E., & Brase, G. (2019). 11–22.

    Google Scholar 

  40. Javed, M. S., Ma, T., Jurasz, J., & Amin, M. (2020). 148, 176–192.

    Google Scholar 

  41. Levasseur, A., Mercier-Blais, S., Prairie, Y., Tremblay, A., & Turpin, C. (2021). Reviews, 136, 110433.

    Google Scholar 

  42. Fuhrman, J., Clarens, A. F., McJeon, H., Patel, P., Doney, S. C., Shobe, W. M., & Pradhan S. (2020).

    Google Scholar 

  43. Esan, O. C., Shi, X., Pan, Z., Huo, X., An, L., Zhao, T. (2020). 10, 2000758.

    Google Scholar 

  44. Cano, Z., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., Chen, Z. (2018). 3, 279–289.

    Google Scholar 

  45. Ng, M.-F., Zhao, J., Yan, Q., Conduit, G. J., & Seh, Z. W. (2020). 2, 161–170.

    Google Scholar 

  46. Pan, Z., Bi, Y., & An, L. (2020). 258, 114060.

    Google Scholar 

  47. Li, F., Thevenon, A. J. A., Wang, Z., Li, Y., Gabardo, C. M, Ozden, A., Dinh, C. T., Li, J., Wang, Y., et al. (2020). 509–513.

    Google Scholar 

  48. Coady, D., Parry, I., Sears, L., & Shang, B. (2017). 91, 11–27.

    Google Scholar 

  49. Cai, J., Chu, X., Xu, K., Li, H., & Wei, J. (2020). 2, 3115–3130.

    Google Scholar 

  50. Yang, X., Luo, Z., Huang, Z., Zhao, Y., Xue, Z., Wang, Y., Liu, W., Liu, S., Zhang, H., & Xu, K. (2020). 8, 167.

    Google Scholar 

  51. Juan, Y., Dai, Y., Yang, Y., & Zhang, J. (2021). 79, 178–190.

    Google Scholar 

  52. Blaiszik, B., Ward, L., Schwarting, M., Gaff, J., Chard, R., Pike, D., Chard, K., & Foster, I. (2019). 9, 1125–1133.

    Google Scholar 

  53. Liu, Y., Esan, O. C., Pan, Z., & An, AI, L. (2021). 3, 100049.

    Google Scholar 

  54. Isayev, O., Fourches, D., Muratov, E. N., Oses, C., Rasch, K., Tropsha, A., & Curtarolo, S. (2015). 27, 735–743.

    Google Scholar 

  55. Mrdjenovich, D., Horton, M. K., Montoya, J. H., Legaspi, C. M., Dwaraknath, S., Tshitoyan, V., Jain, A., & Persson, K. (2020). 2, 464–480.

    Google Scholar 

  56. Patel, P., & Ong, S. P. (2019). 44, 162–163.

    Google Scholar 

  57. Celebi, M. E., & Aydin, K. (2016). 9, 103.

    Google Scholar 

  58. Khatib, M. E., & de Jong, W. A. (2020).

    Google Scholar 

  59. Vasudevan, R. K., Choudhary, K., Mehta, A., Smith, R., Kusne, G., Tavazza, F., Vlcek, L., Ziatdinov, M., Kalinin, S. V., & Hattrick-Simpers, J. (2019). 9, 821–838.

    Google Scholar 

  60. Zhou, M., Gallegos, A., Liu, K., Dai, S., & Wu, J. (2020). 157, 147–152.

    Google Scholar 

  61. Deringer, V. L. (2020). 2, 041003.

    Google Scholar 

  62. Marom, R., Amalraj, S. F., Leifer, N., Jacob, D., & Aurbach, D. J. (2011). 21, 9938–9954.

    Google Scholar 

  63. Liu, K., Wei, Z., Yang, Z., & Li, K. (2021). 289, 125159.

    Google Scholar 

  64. Van Duong, M., Van Tran, M., Garg, A., Van Nguyen, H., Huynh, T. & Phung Le, M. (2021). 45, 4133–4144.

    Google Scholar 

  65. Kim, S., Jinich, A., & Aspuru-Guzik, A. (2017). 57, 657–668.

    Google Scholar 

  66. Sodeyama, K., Igarashi, Y., Nakayama, T., Tateyama, Y., & Okada, M. (2018). 20, 22585–22591.

    Google Scholar 

  67. Ishikawa, A., Sodeyama, K., Igarashi, Y., Nakayama, T., Tateyama, Y., & Okada, M. (2019). 21, 26399–26405.

    Google Scholar 

  68. Okamoto, Y., & Kubo, Y. (2018). 3, 7868–7874.

    Google Scholar 

  69. Dave, A., Mitchell, J., Kandasamy, K., Wang, H., Burke, S., Paria, B., Póczos, B., Whitacre, J., & Viswanathan, V. (2020). 1, 100264.

    Google Scholar 

  70. Zhang, Y., He, X., Chen, Z., Bai, Q., Nolan, A. M., Roberts, C. A., Banerjee, D., Matsunaga, T., Mo, Y., & Ling, C. (2019). 10, 1–7.

    Google Scholar 

  71. Suzuki, K., Ohura, A., Seko, Y., Iwamizu, G., Zhao, M., Hirayama, I., Tanaka, & Kanno, R. (2020). 8, 11582–11588.

    Google Scholar 

  72. Nakayama, M., Kanamori, K., Nakano, K., Jalem, R., Takeuchi, I., & Yamasaki, H. (2019). 19, 771–778.

    Google Scholar 

  73. Wang, Y., Xie, T., France-Lanord, A., Berkley, A., Johnson, J. A., Shao-Horn, Y., & Grossman, J. (2020). 32, 4144–4151.

    Google Scholar 

  74. Sendek, A. D., Cubuk, E. D., Antoniuk, E. R., Cheon, G., Cui, Y., & Reed, E. (2018). 31, 342–352.

    Google Scholar 

  75. Toyao, T., Suzuki, K., Kikuchi, S., Takakusagi, S., Shimizu, K.-I., & Takigawa, I. (2018). 122, 8315–8326.

    Google Scholar 

  76. Takagishi, Y., Yamanaka, T., & Yamaue, T. (2019). 5, 54.

    Google Scholar 

  77. Joshi, R. P., Eickholt, J., Li, L., Fornari, M., Barone, V., & Peralta, J. (2019). 11, 18494–18503.

    Google Scholar 

  78. Turetskyy, A., Thiede, S., Thomitzek, M., von Drachenfels, N., Pape, T., & Herrmann, C. (2020). 8, 1900136.

    Google Scholar 

  79. Soriano-Molina, P., Plaza-Bolaños, P., Lorenzo, A., Agüera, A., Sánchez, J. G., Malato, S., & Pérez, J. (2019). 366, 141–149.

    Google Scholar 

  80. Liu, W., & Xu, Y. (2020). 35, 1715–1718.

    Google Scholar 

  81. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., & Ceder, G. (2013). 1, 011002.

    Google Scholar 

  82. Wang, Z., Ha, J., Kim, Y. H., Im, W. B., McKittrick, J., & Ong, S. (2018). 2, 914–926.

    Google Scholar 

  83. Wang, Z., Chu, I.-H., Zhou, F., & Ong, S. (2016). 28, 4024–4031.

    Google Scholar 

  84. Jin, H., Zhang, H., Li, J., Wang, T., Wan, L., Guo, H., & Wei, Y. (2020). 11, 3075–3081.

    Google Scholar 

  85. Lu, S., Zhou, Q., Ouyang, Y., Guo, Y., Li, Q., & Wang, J. (2018). 9, 1–8.

    Google Scholar 

  86. Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C., & Brgoch, J. J. (2018). 9, 1–10.

    Google Scholar 

  87. Im, J., Lee, S., Ko, T.-W., Kim, H. W., Hyon, Y., & Chang, H. (2019). 5, 1–8.

    Google Scholar 

  88. Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B., Ramprasad, R., Gubernatis, J., & Lookman, T. (2016). 6(1), 9375.

    Google Scholar 

  89. Kusne, A. G., Yu, H., Wu, C., Zhang, H., Hattrick-Simpers, J., DeCost, B., Sarker, S., Oses, C., Toher, C., & Curtarolo, S. (2020), 11, 1–11.

    Google Scholar 

  90. Zhao, Q., Stalin, S., Zhao, C.-Z., & Archer, L. A. (2020). 5, 229–252.

    Google Scholar 

  91. Ceder, G., Ong, S. P., & Wang, Y. J. (2018). 43, 746–751.

    Google Scholar 

  92. Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S. B., Zheng, Y., Shin, Y. K., Junkermeier, C., Engel-Herbert, R., Janik, M. J., & Aktulga, H. M. (2016). 2, 1–14.

    Google Scholar 

  93. Bedrov, D., Piquemal, J.-P., Borodin, O., MacKerell, Jr, A. D., Roux, B., & Schröder, C. J. (2019). 119, 7940–7995.

    Google Scholar 

  94. Novikov, I. S., Gubaev, K., Podryabinkin, E. V., & Shapeev, A.  (2020). 2, 025002.

    Google Scholar 

  95. Wang, C., Aoyagi, K., Wisesa, P., & Mueller, T. (2020). 32, 3741–3752.

    Google Scholar 

  96. Shields, B. J., Stevens, J., Li, J., Parasram, M., Damani, F., Alvarado, J. I. M., Janey, J. M., Adams, R. P., & Doyle, A. G. (2021), 590, 89–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javeed Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, H.R., Khan, F.S., Akhtar, J. (2023). The Application of Novel Functional Materials to Machine Learning. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_5

Download citation

Publish with us

Policies and ethics