Skip to main content

A Machine Learning Approach in Wearable Technologies

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

The combination of wearable devices with the Internet of Things (IoT) and machine learning technologies has led to innovative analytical tools with potential applications in different fields, ranging from healthcare to smart agriculture. In this chapter, we provide an overview of the application of machine learning algorithms to wearable technologies. After introducing the algorithms more commonly used for analyzing data from wearable devices, we review contributions to the field within the last 5 years. Special emphasis is placed on the application of this approach to health monitoring, sports analytics, and smart agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seshadri, D. R., et al. (2019). Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digital Medicine, 2.

    Google Scholar 

  2. Sabry, F., Eltaras, T., Labda, W., Alzoubi, K., & Malluhi, Q. (2022). Machine learning for healthcare wearable devices: The big picture. Journal of Healthcare Engineering, 2022.

    Google Scholar 

  3. María, E., Reyes, F., & Joshi, N. (2021). Smart materials for electrochemical flexible nanosensors : Advances and applications.

    Google Scholar 

  4. Min, J., Sempionatto, J. R., Teymourian, H., Wang, J., & Gao, W. (2021). Wearable electrochemical biosensors in North America. Biosensors & Bioelectronics, 172, 112750.

    Article  Google Scholar 

  5. Wearable Technology Market. (2022). Precedence Research https://www.precedenceresearch.com/wearable-technology-market

  6. Airgo. (2021). https://www.myairgo.com/

  7. VitalPatch RTM. (2022). Vital Connect. https://vitalconnect.com/

  8. SenseHub Dairy. (2022). Allflex. https://www.allflexsa.com/products/monitoring/cow-monitoring/

  9. Sempionatto, J. R., Jeerapan, I., Krishnan, S., & Wang, J. (2019). Wearable chemical sensors: Emerging systems for on-body analytical chemistry. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.9b04668

    Article  Google Scholar 

  10. Cui, F., Yue, Y., Zhang, Y., Zhang, Z., & Zhou, H. S. (2020). Advancing biosensors with machine learning. ACS Sensors, 5, 3346–3364.

    Article  Google Scholar 

  11. Meisel, C., et al. (2020). Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia, 61, 2653–2666.

    Article  Google Scholar 

  12. Zhang, M., et al. (2021). Wearable internet of things enabled precision livestock farming in smart farms: a review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. Journal of Cleaner Production, 312, 127712.

    Article  Google Scholar 

  13. Son, H., et al. (2022). A machine learning approach for the classification of falls and activities of daily living in agricultural workers. IEEE Access, 10, 77418–77431.

    Article  Google Scholar 

  14. Kimball, J. P., Inan, O. T., Convertino, V. A., Cardin, S., & Sawka, M. N. (2022). Wearable sensors and machine learning for hypovolemia problems in occupational, military and sports medicine: Physiological basis, hardware and algorithms. Sensors, 22.

    Google Scholar 

  15. Torgo, L., & Gama, J. (1997). Regression using classification algorithms. Intelligent Data Analysis, 1, 275–292.

    Article  Google Scholar 

  16. Crocker, D. C., & Seber, G. A. F. Linear regression analysis. Technometrics, 22.

    Google Scholar 

  17. Vapnik, V. N. (1998). Statistical learning theory. Wiley-Interscience.

    Google Scholar 

  18. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press.

    Google Scholar 

  19. Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832–844.

    Article  Google Scholar 

  20. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system (pp. 785–794).

    Google Scholar 

  21. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140. https://doi.org/10.1023/A:1018054314350

  22. Opitz, D., & Maclin, R. (1999). Popular ensemble methods: an empirical study. Journal of artificial intelligence research, 11169–198. https://doi.org/10.1613/jair.614

  23. Shwartz-Ziv R., & Armon, A. (2021). Tabular data: deep learning is Not All You Need, arXiv:2106.03253

    Google Scholar 

  24. Fix, E., & Hodges, J. L. (1989). Discriminatory analysis . Nonparametric discrimination: Consistency properties. International Statistical Review, 57, 238–247.

    Google Scholar 

  25. Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27.

    Article  MATH  Google Scholar 

  26. Black, P.E. (Ed.) (2006). Manhattan distance, in dictionary of algorithms and data structures [online], 11 February 2019. Available from: https://www.nist.gov/dads/HTML/manhattanDistance.html. Accessed by 3 Nov 2023

  27. Black, P.E. (Ed.) Euclidean distance, in dictionary of algorithms and data structures [online], 17 December 2004. Available from: https://www.nist.gov/dads/HTML/euclidndstnc.html. accessed Today

  28. Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics, 21, 768–769. JSTOR 2528559

    Google Scholar 

  29. Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice Hall.

    Google Scholar 

  30. Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowledge Discovery, 2, 283–304.

    Google Scholar 

  31. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. A. (1996). Density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (Vol. 2, pp. 226–231). AAAI Press.

    Google Scholar 

  32. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519

  33. Hardesty, L. (2017). MIT News Office. Explained: Neural networks.

    Google Scholar 

  34. Brown, T. B., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 2020-Decem.

    Google Scholar 

  35. Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/

  36. Raschka, S. (2015). Looking at different performance evaluation metrics. In Python MAchine Learning, 189–198. Packt Publishing Ltd.

    Google Scholar 

  37. Fawcett, T. (2006). Introduction to receiver operator curves. Pattern Recognition Letters, 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

  38. Willmott, Cort J., & Matsuura, K., (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82.

    Google Scholar 

  39. Yan, X., & Su, X. (2009). Linear regression analysis: Theory and computing. world scientific.

    Google Scholar 

  40. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

  41. Toh, C., & Brody, J. P. (2021). Applications of machine learning in healthcare. In Smart manufacturing: When artificial intelligence meets the internet of things, 65.

    Google Scholar 

  42. Desautels, T., et al. (2016). Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Medical Informatics, 4, 1–15.

    Article  Google Scholar 

  43. Luo, C., et al. (2022). A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure. Journal of Translational Medicine, 20, 1–9.

    Article  Google Scholar 

  44. Murali, S., Rincon, F., Cassina, T., Cook, S., & Goy, J. J. (2020). Heart rate and oxygen saturation monitoring with a new wearable wireless device in the intensive care unit: Pilot comparison trial. Journal of Medical Internet Research, 22.

    Google Scholar 

  45. Hirten, R. P., et al. (2022). Evaluation of a machine learning approach utilizing wearable data for prediction of SARS-CoV-2 infection in healthcare workers. JAMIA Open, 5, 1–9.

    Article  Google Scholar 

  46. Farooq, A., Seyedmahmoudian, M., & Stojcevski, A. (2021). A Wearable wireless sensor system using machine learning classification to detect arrhythmia. IEEE Sensors Journal, 21, 11109–11116.

    Article  ADS  Google Scholar 

  47. Resque, P., Barros, A., Rosario, D., & Cerqueira, E. (2019). An investigation of different machine learning approaches for epileptic seizure detection. 2019 15th International Wireless Communications and Mobile Computing Conference IWCMC 2019 (pp. 301–306). https://doi.org/10.1109/IWCMC.2019.8766652

  48. Lee, S. H., et al. (2022). Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Science Advances, 8, 1–13.

    Article  Google Scholar 

  49. Green, E. M., et al. (2019). Machine learning detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor. NPJ Digital Medicine, 2, 1–4.

    Google Scholar 

  50. Varatharajan, R., Manogaran, G., Priyan, M. K., & Sundarasekar, R. (2018). Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Comput., 21, 681–690.

    Article  Google Scholar 

  51. Lam, B., et al. (2021). Using wearable activity trackers to predict type 2 diabetes: Machine learning-based cross-sectional study of the UK Biobank accelerometer cohort. JMIR Diabetes, 6, 1–15.

    Article  Google Scholar 

  52. Zhang, K., et al. (2022). Biodegradable smart face masks for machine learning-assisted chronic respiratory disease diagnosis. ACS Sensors. https://doi.org/10.1021/acssensors.2c01628

    Article  Google Scholar 

  53. Yu, J., Wang, X., Chen, X., & Guo, J. (2021). Automatic premature ventricular contraction detection using deep metric learning and KNN. Biosensors, 11.

    Google Scholar 

  54. Lonini, L., et al. (2021). Rapid screening of physiological changes associated with COVID-19 using soft-wearables and structured activities: A pilot study. IEEE Journal of Translational Engineering in Health and Medicine, 9.

    Google Scholar 

  55. Sabry, F., et al. (2022). Towards on-device dehydration monitoring using machine learning from wearable device’s data. Sensors, 22, 1–20.

    Article  Google Scholar 

  56. Dunn, J., et al. (2021). Wearable sensors enable personalized predictions of clinical laboratory measurements. Nature Medicine, 27.

    Google Scholar 

  57. Stehlik, J., et al. (2020). Continuous wearable monitoring analytics predict heart failure hospitalization: The LINK-HF multicenter study. Circulation: Heart Failure 1–10. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006513

  58. Ejupi, A., & Menon, C. (2018). Detection of talking in respiratory signals: A feasibility study using machine learning and wearable textile-based sensors. Sensors (Switzerland), 18.

    Google Scholar 

  59. Zhao, X., et al. (2019). An IoT-based wearable system using accelerometers and machine learning for fetal movement monitoring. In Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems ICPS 2019 (pp. 299–304). https://doi.org/10.1109/ICPHYS.2019.8780301

  60. Qi, W., & Aliverti, A. (2020). A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity. IEEE Journal of Biomedical and Health Informatics, 24, 2199–2207.

    Article  Google Scholar 

  61. Gossec, L., et al. (2019). Detection of flares by decrease in physical activity, collected using wearable activity trackers in rheumatoid arthritis or axial spondyloarthritis: An application of machine learning analyses in rheumatology. Arthritis Care and Research, 71, 1336–1343.

    Article  Google Scholar 

  62. Kańtoch, E. (2018). Recognition of sedentary behavior by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk. Sensors (Switzerland), 18, 1–17.

    Article  Google Scholar 

  63. Veli, M., & Ozcan, A. (2018). Computational sensing of staphylococcus aureus on contact lenses using 3D imaging of curved surfaces and machine learning. ACS Nano, 12, 2554–2559.

    Article  Google Scholar 

  64. Zeng, Z., et al. (2020). Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms. ACS Sensors, 5, 1305–1313.

    Article  Google Scholar 

  65. Fairbairn, C. E., Kang, D., & Bosch, N. (2020). Using machine learning for real-time BAC estimation from a new-generation transdermal biosensor in the laboratory. Drug and Alcohol Dependence, 216, 108205.

    Article  Google Scholar 

  66. Nath, R. K., Thapliyal, H., & Caban-Holt, A. (2022). Machine learning based stress monitoring in older adults using wearable sensors and cortisol as stress biomarker. The Journal of Signal Processing Systems, 94, 513–525.

    Google Scholar 

  67. Desai, K., et al. (2020). A novel machine learning based wearable belt for fall detection. In 2020 IEEE International Conference on Computing Power Communication Technologies GUCON 2020 (pp. 502–505). https://doi.org/10.1109/GUCON48875.2020.9231114

  68. Wang, X., Xiao, Y., Deng, F., Chen, Y., & Zhang, H. (2021). Eye-movement-controlled wheelchair based on flexible hydrogel biosensor and wt-svm. Biosensors, 11.

    Google Scholar 

  69. Choi, Y. A., et al. (2021). Machine-learning-based elderly stroke monitoring system using electroencephalography vital signals. Applied Sciences, 11, 1–18.

    ADS  Google Scholar 

  70. Yu, S., Chai, Y., Chen, H., Sherman, S. J., & Brown, R. A. (2022). Wearable sensor-based chronic condition severity assessment: An adversarial attention-based deep multisource multitask learning approach. MIS Quarterly, 46, 1355–1394.

    Article  Google Scholar 

  71. World Health Organization. (2022). Epilepsy. https://www.who.int/news-room/fact-sheets/detail/epilepsy#:~:text=Ratesofdisease&text=Theestimatedproportionofthe,diagnosedwithepilepsyeachyear

  72. Wang, M., et al. (2022). A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nature Biomedical Engineering. https://doi.org/10.1038/s41551-022-00916-z

    Article  Google Scholar 

  73. Sempionatto, J. R., et al. (2021). An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nature Biomedical Engineering, 5, 737–748.

    Google Scholar 

  74. Yang, Y., et al. (2020). A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature Biotechnology, 38, 217–224.

    Article  Google Scholar 

  75. Muniz-Pardos, B., et al. (2021). Wearable and telemedicine innovations for Olympic events and elite sport. The Journal of sports medicine and physical fitness, 61, 1061–1072.

    Google Scholar 

  76. Jeong, Y., et al. (2021). Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring. Advanced Healthcare Materials, 10, 2001461.

    Article  Google Scholar 

  77. Menzel, T., & Potthast, W. (2021). Validation of a novel boxing monitoring system to detect and analyse the centre of pressure movement on the boxer’s fist. Sensors, 21, 8394.

    Article  ADS  Google Scholar 

  78. Liu, W., Long, Z., Yang, G., & Xing, L. (2022). A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors, 12, 60.

    Article  Google Scholar 

  79. Gao, W., et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529, 509–514.

    Article  ADS  Google Scholar 

  80. Hao, J., Zhu, Z., Hu, C., & Liu, Z. (2022). Photosensitive-stamp-inspired scalable fabrication strategy of wearable sensing arrays for noninvasive real-time sweat analysis. Analytical Chemistry, 94, 4547–4555.

    Article  Google Scholar 

  81. Zhong, J., et al. (2022). Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Advanced Materials, 34, 2107758.

    Article  Google Scholar 

  82. Ji, S., et al. (2020). Water-resistant conformal hybrid electrodes for aquatic endurable electrocardiographic monitoring. Advanced Materials, 32, 2001496.

    Article  Google Scholar 

  83. Pan, L., et al. (2014). An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 5, 1–8.

    Article  Google Scholar 

  84. Yeung, K. K., et al. (2021). Recent advances in electrochemical sensors for wearable sweat monitoring: A review. IEEE Sensors Journal, 21, 14522–14539.

    Article  ADS  Google Scholar 

  85. Liu, Y., et al. (2018). Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features. Sensors, 18, 645.

    Article  ADS  Google Scholar 

  86. Liu, G., et al. (2016). A wearable conductivity sensor for wireless real-time sweat monitoring. Sensors Actuators B Chemical, 227, 35–42.

    Article  Google Scholar 

  87. Tabasum, H., Gill, N., Mishra, R., & Lone, S. (2022). Wearable microfluidic-based e-skin sweat sensors. RSC Advances, 12, 8691–8707.

    Article  ADS  Google Scholar 

  88. Rajšp, A., & Fister, I., Jr. (2020). A systematic literature review of intelligent data analysis methods for smart sport training. Applied Sciences, 10, 3013.

    Article  Google Scholar 

  89. Acikmese, Y., Ustundag, B. C., & Golubovic, E. (2017) Towards an artificial training expert system for basketball. In 2017 10th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 1300–1304). IEEE.

    Google Scholar 

  90. Das, D., Busetty, S. M., Bharti, V., & Hegde, P. K. (2017). Strength training: A fitness application for indoor based exercise recognition and comfort analysis. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1126–1129). IEEE.

    Google Scholar 

  91. López-Matencio, P., Alonso, J. V., González-Castano, F. J., Sieiro, J. L., & Alcaraz, J. J. (2010). Ambient intelligence assistant for running sports based on k-NN classifiers. In 3rd International Conference on Human System Interaction (pp. 605–611). IEEE.

    Google Scholar 

  92. Zhou, B., Sundholm, M., Cheng, J., Cruz, H., & Lukowicz, P. (2016). Never skip leg day: A novel wearable approach to monitoring gym leg exercises. In 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom) (pp. 1–9). IEEE.

    Google Scholar 

  93. Ohgi, Y., Kaneda, K., & Takakura, A. (2014). Sensor data mining on the kinematical characteristics of the competitive swimming. Procedia Engineering, 72, 829–834.

    Article  Google Scholar 

  94. Lim, S.-M., Oh, H.-C., Kim, J., Lee, J., & Park, J. (2018). LSTM-guided coaching assistant for table tennis practice. Sensors, 18, 4112.

    Article  ADS  Google Scholar 

  95. Zago, M., Sforza, C., Dolci, C., Tarabini, M., & Galli, M. (2019). Use of machine learning and wearable sensors to predict energetics and kinematics of cutting maneuvers. Sensors, 19, 3094.

    Article  ADS  Google Scholar 

  96. Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Frontiers in Sustainable Food Systems, 2, 1–7.

    Google Scholar 

  97. Alexander, P., et al. (2017). Smart irrigation system for smart farming. In 26th International Conference on Information Systems Development (ISD2017 CYPRUS).

    Google Scholar 

  98. Yin, H., et al. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33, 1–24.

    Google Scholar 

  99. Neethirajan, S. (2020). The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29, 100367.

    Article  Google Scholar 

  100. Suparwito, H., Thomas, D. T., Wong, K. W., Xie, H., & Rai, S. (2021). The use of animal sensor data for predicting sheep metabolisable energy intake using machine learning. Information Processing in Agriculture, 8, 494–504.

    Article  Google Scholar 

  101. Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76, 267–275.

    Article  Google Scholar 

  102. Benos, L., Tsaopoulos, D., & Bochtis, D. (2020). A review on ergonomics in agriculture. part II: Mechanized operations. Applied Sciences, 10.

    Google Scholar 

  103. Aiello, G., Catania, P., Vallone, M., & Venticinque, M. (2022). Worker safety in agriculture 4.0: A new approach for mapping operator’s vibration risk through machine learning activity recognition. Computers and Electronics in Agriculture, 193.

    Google Scholar 

  104. Lee, G., Wei, Q., & Zhu, Y. (2021). Emerging wearable sensors for plant health monitoring. Advanced Functional Materials, 31.

    Google Scholar 

  105. Tang, W., Yan, T., Ping, J., Wu, J., & Ying, Y. (2017). Rapid fabrication of flexible and stretchable strain sensor by chitosan-based water ink for plants growth monitoring. Advanced Materials Technologies, 2, 1–5.

    Article  Google Scholar 

  106. Jiang, J., Zhang, S., Wang, B., Ding, H., & Wu, Z. (2020). Hydroprinted Liquid-alloy-based morphing electronics for fast-growing/tender plants: From physiology monitoring to habit manipulation. Small, 16.

    Google Scholar 

  107. Lee, H. J., Joyce, R., & Lee, J. (2022). Liquid polymer/metallic salt-based stretchable strain sensor to evaluate fruit growth. ACS Applied Materials & Interfaces, 14, 5983–5994.

    Article  Google Scholar 

  108. Nassar, J. M., et al. (2018). Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flexible Electronics, 2, 1–12.

    Google Scholar 

  109. Barbosa, J. A., et al. (2022). Biocompatible wearable electrodes on leaves toward the on-site monitoring of water loss from plants. ACS Applied Materials & Interfaces, 14, 22989–23001.

    Article  Google Scholar 

  110. Li, Z., et al. (2021). Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter, 4, 2553–2570.

    Article  Google Scholar 

  111. Li, D., et al. (2022). Virtual sensor array based on piezoelectric cantilever resonator for identification of volatile organic compounds. ACS Sensors, 7, 1555–1563.

    Article  Google Scholar 

Download references

Acknowlegements

This work was supported by FAPESP (2018/22214-6 and 2020/14906-5), CNPq, CAPES, and INEO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Ibáñez-Redin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibáñez-Redin, G., Duarte, O.S., Cagnani, G.R., Oliveira, O.N. (2023). A Machine Learning Approach in Wearable Technologies. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_3

Download citation

Publish with us

Policies and ethics