Skip to main content

Machine Learning-Driven Gas Identification in Gas Sensors

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

Gas identification plays a critical role in characterizing our (chemical) environment. It allows to warn of hazardous gases and may help to diagnose medical conditions. Miniaturized gas sensors, and especially those based on chemiresistive detection mechanisms, have gained rapid development and commercialization in the past decades due to their numerous advantageous characteristics, such as simple fabrication, easy operation, high sensitivity, ability to detect a wide range of gases, and compatibility with miniaturization as well as integration for portable applications. However, they suffer from a remarkable limitation, namely their low selectivity. Recently, machine learning-driven approaches to enhance the selectivity of gas sensors have attracted considerable interest in the community of gas sensors, increasing the analyte gas identification ability. In this chapter, firstly, we introduce the general approaches to enhance the selectivity of gas sensors implemented by machine learning techniques, which consists of the architecture scheme design of gas sensors (sensor array and single sensor architecture), the selection of gas sensing response features (steady-state feature and transient-state feature), and the utilization of gas sensing signal modulation techniques (sensing materials modulation, concentration modulation, and temperature modulation). Afterward, a specific application case using a machine learning-enabled smart gas sensor for the identification of industrial gases (PH3 and NH3) is presented, which is based on a single-channel device and utilizes multiple transient features of the response. We believe machine learning in combination with efficient sensing signal modulation techniques could be a feasible way to gain the gas identification capability of gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bashir, M. F., Jiang, B., Komal, B., Bashir, M. A., Farooq, T. H., Iqbal, N., & Bashir, M. (2020).Environmental Research, 187, 109652.

    Google Scholar 

  2. Koolen, C. D., & Rothenberg, G. (2019). ChemSusChem, 12(1), 164–172.

    Article  Google Scholar 

  3. Zhang, H., Wang, Y., Zhang, B., Yan, Y., Xia, J., Liu, X., Qiu, X., & Tang, Y. (2019). Electrochimica Acta, 304, 109–117.

    Article  Google Scholar 

  4. Wu, Z., Chen, X., Zhu, S., Zhou, Z., Yao, Y., Quan, W., & Liu, B. (2013). Sensors and Actuators B: Chemical, 178, 485–493.

    Article  Google Scholar 

  5. Wang, Y., Lew, K. K., Ho, T. T., Pan, L., Novak, S. W., Dickey, E. C., Redwing, J. M., & Mayer, T. S. (2005). Nano Letters, 5(11), 2139–2143.

    Article  ADS  Google Scholar 

  6. Spinelle, L., Gerboles, M., Kok, G., Persijn, S., & Sauerwald, T. (2017). Sensors (Basel), 17(7), 30.

    Article  Google Scholar 

  7. Huang, Y., Ho, S. S., Lu, Y., Niu, R., Xu, L., Cao, J., & Lee, S. (2016). Molecules, 21(1), 56.

    Article  Google Scholar 

  8. Rajabi, H., Mosleh, M. H., Mandal, P., Lea-Langton, A., & Sedighi, M. (2020). Science of the Total Environment, 727, 138654.

    Google Scholar 

  9. Weschler, C. J. (2009). Atmospheric Environment, 43(1), 153–169.

    Article  ADS  Google Scholar 

  10. Nikolic, M. V., Milovanovic, V., Vasiljevic, Z. Z., & Stamenkovic, Z. (2020). Sensors (Basel), 20(22).

    Google Scholar 

  11. Yamazoe, N. (2005). Sensors and Actuators B: Chemical, 108(1–2), 2–14.

    Article  Google Scholar 

  12. Häggström, M. (25 July 2014). WikiJournal of Medicine, 1(2).

    Google Scholar 

  13. Minhajul Alam, S. M., Barua, A., Raihan, A., Alam, M. J., Chakma, R., Mahtab, S. S., & Biswas, C. (2021). International Conference on Communication, Computing and Electronics Systems (unpublished).

    Google Scholar 

  14. Somov, A., Baranov, A., Savkin, A., Spirjakin, D., Spirjakin, A., & Passerone, R. (2011). Sensors and Actuators A: Physical, 171(2), 398–405.

    Article  Google Scholar 

  15. Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., & Younis, M. I. (2018). Sensors and Actuators A: Physical, 283, 254–262.

    Article  Google Scholar 

  16. Yamazoe, N., & Shimanoe, V. (2013). Semiconductor gas sensors (pp. 3–34).

    Google Scholar 

  17. Maekawa, T., Tamaki, J., Miura, N., Yamazoe, N., & Matsushima, S. (1992). Sensors and Actuators B: Chemical, 9(1), 63–69.

    Article  Google Scholar 

  18. Hulanicki, A., Glab, S., & Ingman, F. (1991). Pure and Applied Chemistry, 63(9), 1247–1250.

    Article  Google Scholar 

  19. Majhi, S. M., Mirzaei, A., Kim, H. W., Kim, S. S., & Kim, T. W. (2021). Nano Energy, 79, 105369.

    Article  Google Scholar 

  20. Reddy, B. K. S., & Borse, P. H. (2021). Journal of The Electrochemical Society, 168(5), 057521.

    Article  ADS  Google Scholar 

  21. Lerchner, J., Caspary, D., & Wolf, G. (2000). Sensors and Actuators B: Chemical, 70(1), 57–66.

    Article  Google Scholar 

  22. Acharyya, S., Nag, S., & Guha, P. K. (2022). Analytica Chimica Acta, 1217, 339996.

    Article  Google Scholar 

  23. Saxena, P., & Shukla, P. (2022). Computational and experimental methods in mechanical engineering (pp. 165–175).

    Google Scholar 

  24. Izu, N., Shin, W., & Murayama, N. (2002). Sensors and Actuators B: Chemical, 87(1), 99–104.

    Article  Google Scholar 

  25. Wilson, D. M., Hoyt, S., Janata, J., Booksh, K., & Obando, L. (2001). IEEE Sensors Journal, 1(4), 256–274.

    Article  ADS  Google Scholar 

  26. Turner, A. P. F., & Magan, N. (2004). Nature Reviews Microbiology, 2(2), 161–166.

    Article  Google Scholar 

  27. Wang, H. C., Li, Y., & Yang, M. J. (2006). Sensors and Actuators B: Chemical, 119(2), 380–383.

    Article  Google Scholar 

  28. Burgués, J., Jiménez-Soto, J. M., & Marco, S. (2018). Analytica Chimica Acta, 1013, 13–25.

    Article  Google Scholar 

  29. (2014). Principles of neural science (5th ed.). McGraw-Hill Education.

    Google Scholar 

  30. Boekhoff, I., & Breer, H. (1992). Proceedings of the National Academy of Sciences, 89(2), 471–474.

    Article  ADS  Google Scholar 

  31. Ko, H. J., & Park, T. H. (2016). Journal of Biological Engineering, 10, 17.

    Article  Google Scholar 

  32. Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Cell, 96(5), 713–723.

    Article  Google Scholar 

  33. Gardner, J. W., & Bartlett, P. N. (1994). Sensors and Actuators B: Chemical, 18(1–3), 210–211.

    Article  Google Scholar 

  34. Jian-Wei, G., Quan-Fang, C., Ming-Ren, L., Nen-Chin, L., & Daoust, C. (2006). IEEE Sensors Journal, 6(1), 139–145.

    Article  ADS  Google Scholar 

  35. Zhou, X., Cheng, X., Zhu, Y., Elzatahry, A. A., Alghamdi, A., Deng, Y., & Zhao, D. (2018). Chinese Chemical Letters, 29(3), 405–416.

    Article  Google Scholar 

  36. Borowik, P., Adamowicz, L., Tarakowski, R., Siwek, K., & Grzywacz, T. (2020). Sensors (Basel), 20(12).

    Google Scholar 

  37. Nallon, E. C., Schnee, V. P., Bright, C. J., Polcha, M. P., & Li, Q. (2016). Analytical Chemistry, 88(2), 1401–1406.

    Article  Google Scholar 

  38. Yan, J., Guo, X., Duan, S., Jia, P., Wang, L., Peng, C., & Zhang, S. (2015). Sensors, 15(11), 27804–27831.

    Article  ADS  Google Scholar 

  39. Trincavelli, M., Coradeschi, S., & Loutfi, A. (2009). Sensors and Actuators B: Chemical, 139(2), 265–273.

    Article  Google Scholar 

  40. Zhang, S., Xie, C., Zeng, D., Zhang, Q., Li, H., & Bi, Z. (2007). Sensors and Actuators B: Chemical, 124(2), 437–443.

    Article  Google Scholar 

  41. Calvi, A., Ferrari, A., Sbuelz, L., Goldoni, A., & Modesti, S. (2016). Sensors, 16(5), 731.

    Article  ADS  Google Scholar 

  42. Oh, M.-K., De, R., & Yim, S.-Y. (2018). Journal of Raman Spectroscopy, 49(5), 800–809.

    Article  ADS  Google Scholar 

  43. Pashami, S., Lilienthal, A. J., Schaffernicht, E., & Trincavelli, M. (2013). Sensors, 13(6), 7323–7344.

    Article  ADS  Google Scholar 

  44. Ionescu, R. (2005). Sensors and Actuators B: Chemical, 104(1), 132–139.

    Article  Google Scholar 

  45. (2002).

    Google Scholar 

  46. Saruhan, B., Lontio Fomekong, R., & Nahirniak, S. (2021). Frontiers in Sensors, 2.

    Google Scholar 

  47. Barsan, N., & Weimar, U. (2001). Journal of Electroceramics, 7(3), 143–167.

    Article  Google Scholar 

  48. Choopun, S., Hongsith, N., & Wongrat, E. (2012). Nanowires—Recent Advances.

    Google Scholar 

  49. Katsuki, A., & Fukui, K. (1998). Sensors and Actuators B: Chemical, 52(1), 30–37.

    Article  Google Scholar 

  50. Huang, S., Croy, A., Panes-Ruiz, L. A., Khavrus, V., Bezugly, V., Ibarlucea, B., & Cuniberti, G. (2022). Advanced Intelligent Systems, 4(4).

    Google Scholar 

  51. Huang, S., Panes-Ruiz, L. A., Croy, A., Löffler, M., Khavrus, V., Bezugly, V., & Cuniberti, G. (2021). Carbon, 173, 262–270.

    Article  Google Scholar 

  52. Abdi, H., & Williams, L. J. (2010). WIREs Computational Statistics, 2(4), 433–459.

    Article  Google Scholar 

  53. Sharma, A., & Paliwal, K. K. (2015). International Journal of Machine Learning and Cybernetics, 6(3), 443–454.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the below funding projects: VolkswagenStiftung (grant no. 96632, 9B396) project, EU project “Smart Electronic Olfaction for Body Odor Diagnostics” (SMELLODI, grant no. 101046369), 6G-life project (Federal Ministry of Education and Research of Germany in the programme of “Souverän. Digital. Vernetzt.”, project identification no. 16KISK001K), as well as Sächsische Aufbaubank (SAB) project (project no. 100525920).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shirong Huang or Gianaurelio Cuniberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, S., Croy, A., Ibarlucea, B., Cuniberti, G. (2023). Machine Learning-Driven Gas Identification in Gas Sensors. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_2

Download citation

Publish with us

Policies and ethics