Skip to main content

Discovery of Novel Photocatalysts Using Machine Learning Approach

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

 Machine learning (ML) in photocatalysis research is still at its very beginning. Given recent developments, it is clear that computational screening techniques are a powerful and efficient means for achieving accelerated discovery of new materials. This is true of arriving at novel photocatalysts as well. In particular, structural, electronic, optical properties, diffusion and defect studies of photocatalysts are investigated using any one of or a combination of computational approaches such as density functional theory (DFT), molecular dynamics (MD) simulations, and ML method. There is also need to understand the underlying physics, wherein the multi-feature analysis approaches of materials informatics can play a role. However currently the major issue is the lack of training data. To overcome this bottleneck, we believe that the combination of continued photocatalysis experimental and computational research along with materials informatics can offer a way forward. We note here that to screen photocatalyst based on their efficiencies, ML technique would require accurate and adequate descriptors. Formation energy, cohesive energy, binding energy, energy band gap, conduction band minimum (CBM), valence band maximum (VBM), effective masses, dielectric constants, refractive index, absorption co-efficient, electron energy loss function, work function and defect formation energy are reasonable descriptors for determining photocatalytic hydrogen production activity. When compared to traditional approaches that are entirely experimental and/or computational, the ML model would offer an economical approach to rapid performance prediction, potentially relevant even for novel compositions. This chapter explains the state of the art in materials informatics as it pertains to photocatalysts. We recognize that this area is still at its nascent stage. Hence we will also indicate the key gaps that exist that require immediate attention and the roadmap forward. The combination of ML with photocatalysis expertise could pave the way for the creation of a comprehensive catalyst screening platform that would greatly help in making photocatalysis prominent and technologically relevant, at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medford, A. J., & Hatzell, M. C. (2017). ACS Catalysis, 7(4), 2624–2643. https://doi.org/10.1021/acscatal.7b00439

  2. Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 26, 4607–4626. https://doi.org/10.1002/adma.201400087

  3. Schultz, D. M., & Yoon, T. P. (2014). Science, 343, 6174, 1239176. https://doi.org/10.1126/science.1239176

  4. Kudo, A., & Miseki, Y. (2009). Chemical Society Reviews, 38, 253–278.

    Google Scholar 

  5. Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2–3), 186–205. ISSN: 1389-5567.

    Google Scholar 

  6. Teoh, W. Y., Scott, J. A., & Amal, R. (2012). The Journal of Physical Chemistry Letters, 3(5), 629–639. https://doi.org/10.1021/jz3000646

  7. Zhu, S., & Wang, D. (2017). Advanced Energy Materials, 7, 1700841. https://doi.org/10.1002/aenm.201700841

    Article  Google Scholar 

  8. Wang, Q., & Domen, K. (2020). Chemical Reviews, 120(2), 919–985. https://doi.org/10.1021/acs.chemrev.9b00201

  9. Wu, Y., Lazic, P., Hautier, G., Persson, K., & Ceder, G. (2013). Energy & Environmental Science, 61, 157–168 (The Royal Society of Chemistry). https://doi.org/10.1039/C2EE23482C

  10. Castelli, I. E., Olsen, T., Datta, S., Landis, D. D., Dahl, S., Thygesen, K. S., Jacobsen, K. W. (2012). Energy and Environmental Science, 5(2), 5814–5819 (The Royal Society of Chemistry). https://doi.org/10.1039/C1EE02717D

  11. Castelli, I. E., Landis, D. D., Thygesen, K. S., Dahl, S., Chorkendorff, I., Jaramillo, T. F., & Jacobsen, K. W. (2012). Energy & Environmental Science, 5, 9034–9043.

    Google Scholar 

  12. Castelli, I. E., Olsen, T., Datta, S., Landis, D. D., Dahl, S., Thygesen, K. S., & Jacobsen, K. W. (2012).Energy & Environmental Science, 5, 5814–5819.

    Google Scholar 

  13. Chen, S., Takata, T., & Domen, K. (2017). Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2, 17050. https://doi.org/10.1038/natrevmats.2017.50

    Article  ADS  Google Scholar 

  14. Nursam, N. M., Wang, X., & Caruso, R. A. (2015). ACS Combinatorial Science, 17(10), 548–569. https://doi.org/10.1021/acscombsci.5b00049

    Article  Google Scholar 

  15. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38. https://doi.org/10.1038/238037a0

    Article  ADS  Google Scholar 

  16. Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V., & Amal, R. (2019).ACS Catalysis, 9(12), 11774–11787.

    Google Scholar 

  17. Baumes, L., Farrusseng, D., Lengliz, M., & Mirodatos, C. (2004). Using artificial neural networks to boost high-throughput discovery in heterogeneous catalysis. QSAR & Combinatorial Science, 23, 767–778.

    Article  Google Scholar 

  18. Goldsmith, B. R., Esterhuizen, J., Liu, J.-X., Bartel, C. J., & Sutton, C. (2018). Machine learning for heterogeneous catalyst design and discovery. AIChE Journal, 64, 2311–2323. https://doi.org/10.1002/aic.16198

    Article  Google Scholar 

  19. Kitchin, J. R. (2018). Machine learning in catalysis. Nature Catalysis, 1, 230–232. https://doi.org/10.1038/s41929-018-0056-y

  20. Yuan, R., Liu, Z., Balachandran, P. V., Xue, D., Zhou, Y., Ding, X., Sun, J., Xue, D., & Lookman, T. (2018). Advanced Materials, 30, 1702884. https://doi.org/10.1002/adma.201702884

    Article  Google Scholar 

  21. Li, Z., Ma, X., & Xin, H. (2017).Catalysis Today, 280, 232–238. ISSN: 0920-5861. https://doi.org/10.1016/j.cattod.2016.04.013

  22. Azadi, S., Karimi-Jashni, A., & Javadpour, S. (2018). 117, 267–277. ISSN: 0957-5820. https://doi.org/10.1016/j.psep.2018.03.038

  23. Chakraborty, S., Xie, W., Mathews, N., Sherburne, M., Ahuja, R., Asta, M., & Mhaisalkar, S. G. (2017). ACS Energy Letters, 2(4), 837–845. https://doi.org/10.1021/acsenergylett.7b00035

    Article  Google Scholar 

  24. Liu, D., Li, Q., Hu, J., Jing, H., & Wu, K. (2019).Journal of Materials Chemistry C, 7, 371–379. https://doi.org/10.1039/C8TC04065F

  25. Mounet, N., Gibertini, M., Schwaller, P., et al. (2018). Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nature Nanotech, 13, 246–252. https://doi.org/10.1038/s41565-017-0035-5

  26. Balachandran, P. V. (2019). 164, 82–90. ISSN: 0927-0256. https://doi.org/10.1016/j.commatsci.2019.03.057

  27. Gladkikh, V., Kim, D. Y., Hajibabaei, A., Jana, A., Myung, C. W., & Kim, K. S. (2020).The Journal of Physical Chemistry C, 124(16), 8905–8918. https://doi.org/10.1021/acs.jpcc.9b11768

  28. Li, C., Hao, H., Xu, B., Zhao, G., Chen, L., Zhang, S., & Liu, H. (2020).Journal of Materials Chemistry C, 8, 3127–3136.

    Google Scholar 

  29. Lu, S., Zhou, Q., Ma, L., Guo, Y., & Wang, J. (2019). Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning. Small Methods, 3, 1900360. https://doi.org/10.1002/smtd.201900360

    Article  Google Scholar 

  30. Moghadam, P. Z., Rogge, S. M., Li, A., Chow, C. M., Wieme, J., Moharrami, N., Aragones-Anglada, M., Conduit, G., Gomez-Gualdron, D. A., Van Speybroeck, V., & Fairen-Jimenez, D. (2019). Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter, 1(1), 219–234. ISSN: 2590-2385. https://doi.org/10.1016/j.matt.2019.03.002

  31. Shi, Z., Yang, W., Deng, X., Cai, C., Yan, Y., Liang, H., Liu, Z., & Qiao, Z. (2020). Molecular Systems Design & Engineering, 5, 725–742.

    Google Scholar 

  32. Wu, Y., Duan, H., & Xi, H. (2020).Chemistry of Materials, 32(7), 2986–2997. https://doi.org/10.1021/acs.chemmater.9b05322

  33. Sasikumar, K., Chan, H., Narayanan, B., & Sankaranarayanan, S. K. (2019). Chemistry of Materials, 31(9), 3089–3102. https://doi.org/10.1021/acs.chemmater.8b03969

  34. Li, Z., Xu, Q., Sun, Q., Hou, Z., & Yin, W.-J. (2019). Advanced Functional Materials, 29, 1807280. https://doi.org/10.1002/adfm.201807280

    Article  Google Scholar 

  35. Lu, H., Li, X., Monny, S. A., Wang, Z., Wang, L. (2022). Chinese Journal of Catalysis, 43(5), 1204–1215. ISSN: 1872-2067. https://doi.org/10.1016/S1872-2067(21)64028-7

  36. Kaufmann, K., Maryanovsky, D., Mellor, W. M., et al. (2020). Discovery of high-entropy ceramics via machine learning. Npj Computational Materials, 6, 42. https://doi.org/10.1038/s41524-020-0317-6

  37. Qureshi, M., & Takanabe, K. (2017). Chemistry of Materials, 29(1), 158–167. https://doi.org/10.1021/acs.chemmater.6b02907

    Article  Google Scholar 

  38. Mills, A., Hill, C., & Robertson, P. K. (2012).Journal of Photochemistry and Photobiology A: Chemistry, 237, 7–23. ISSN: 1010-6030. https://doi.org/10.1016/j.jphotochem.2012.02.024

  39. Buriak, J. M., Kamat, P. V., & Schanze, K. S. (2014). ACS Applied Materials & Interfaces, 6(15), 11815–11816. https://doi.org/10.1021/am504389z

    Article  Google Scholar 

  40. American Society for Testing and Materials. Committee G03 on Weathering and Durability. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; ASTM International (2012).

    Google Scholar 

  41. Chen, C., Zuo, Y., Ye, W., Li, X., Deng, Z., & Ong, S. P. (2020). A critical review of machine learning of energy materials. Advanced Energy Materials, 10, 1903242. https://doi.org/10.1002/aenm.201903242

    Article  Google Scholar 

  42. Himanen, L., Geurts, A., Foster, A. S., & Rinke, P. (2019). Data-driven materials science: Status, challenges, and perspectives. Advancement of Science, 6, 1900808. https://doi.org/10.1002/advs.201900808

    Article  Google Scholar 

  43. Toyao, T., Maeno, Z., Takakusagi, S., Kamachi, T., Takigawa, I., & Shimizu, K.-I. (2020). ACS Catalysis, 10(3), 2260–2297. https://doi.org/10.1021/acscatal.9b04186

    Article  Google Scholar 

  44. Abor, D. P., Roch, L. M., Saikin, S. K., et al. (2018). Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews Materials, 3, 5–20. https://doi.org/10.1038/s41578-018-0005-z

  45. Sun, X., Wang, C., Su, D., Wang, G., & Zhong, Y. (2020). Application of photocatalytic materials in sensors. Advanced Materials Technologies, 5, 1900993. https://doi.org/10.1002/admt.201900993

    Article  Google Scholar 

  46. Ismael, M. (2021). 303, 121207. ISSN: 0016-2361. https://doi.org/10.1016/j.fuel.2021.121207

  47. Hanif, M. A., Kim, Y. S., Ameen, S., Kim, H. G., & Kwac, L. K. (2022).Boosting the visible light photocatalytic activity of ZnO through the incorporation of N-doped for wastewater treatment. Coatings, 12(5), 579. https://doi.org/10.3390/coatings12050579

  48. Wu, Z., Zhong, H., Yuan, X., Wang, H., Wang, L., Chen, X., Zeng, G. & Wu, Y. (2014).67, 330–344. ISSN: 0043-1354. https://doi.org/10.1016/j.watres.2014.09.026

  49. Chang, J., Ma, J., Ma, Q., Zhang, D., Qiao, N., Hu, M., & Ma, H.Applied Clay Science, 119, 132–140. ISSN 0169-1317. https://doi.org/10.1016/j.clay.2015.06.038

  50. Hitam, C. N. C., & Jalil, A. A. (2020). Journal of Environmental Management, 258, 110050. ISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2019.110050

  51. Khan, M.Y., Ahmad, M., Sadaf, S., Iqbal, S., Nawaz, F., & Iqbal, J. (2019). Journal of Materials Research and Technology, 8(3), 3261–3269. ISSN: 2238-7854. https://doi.org/10.1016/j.jmrt.2019.05.015

  52. Li, Z., Zhang, P., Shao, T., Wang, J., Jin, L., & Li, X. (2013). Journal of Hazardous Materials, 260, 40–46. ISSN: 0304-3894. https://doi.org/10.1016/j.jhazmat.2013.04.042

  53. Wang, G., Huang, B., Li, Z., et al. (2015). Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light. Science and Reports, 5, 8544. https://doi.org/10.1038/srep08544

    Article  Google Scholar 

  54. Lim, H., & Rawal, S. B. (2017). Progress in Natural Science: Materials International, 27(3), 289–296. ISSN: 1002-0071. https://doi.org/10.1016/j.pnsc.2017.04.003

  55. Salari, H. (2020). Materials Research Bulletin, 131, 110979, ISSN 0025-5408. https://doi.org/10.1016/j.materresbull.2020.110979

  56. Hu, K., Liu, P., Zhang, Z., Bian, J., Wang, G., Wu, H., Xu, H., & Jing, L. (2022).The Journal of Physical Chemistry C, 126(23), 9704–9712. https://doi.org/10.1021/acs.jpcc.2c01919

  57. Priyanga, G. S., Mattur, M. N., Nagappan, N., Rath, S., & Thomas, T. (2022). Prediction of nature of band gap of perovskite oxides (ABO3) using a machine learning approach. Journal of Materiomics, 8(5), 937–948. ISSN 2352-8478. https://doi.org/10.1016/j.jmat.2022.04.006

  58. Behara, S., Rath, S., & Thomas, T. (2022). Machine learning (ML) as a tool for phosphor design: A perspective. Materials Letters, 308, Part A, 131061, ISSN: 0167-577X. https://doi.org/10.1016/j.matlet.2021.131061

  59. Behara, S., Poonawala, T., & Thomas, T. (2021). Crystal structure classification in ABO3 perovskites via machine learning. Computational Materials Science, 188, 110191. ISSN 0927-0256. https://doi.org/10.1016/j.commatsci.2020.110191

  60. Rath, S., Priyanga, G. S., Nagappan, N., & Thomas, T. (2022). Discovery of direct band gap perovskites for light harvesting by using machine learning. Computational Materials Science, 210, 111476. ISSN 0927-0256. https://doi.org/10.1016/j.commatsci.2022.111476

  61. Neațu, Ș, Maciá-Agulló, J. A., & Garcia, H. (2014). Solar light photocatalytic CO2 reduction: General considerations and selected bench-mark photocatalysts. International Journal of Molecular Sciences, 15(4), 5246–5262. https://doi.org/10.3390/ijms15045246

    Article  Google Scholar 

  62. https://towardsdatascience.com/uncovering-the-potential-of-materials-data-using-matminer-and-pymatgen-83126fadde1c

  63. Ward, L., Liu, R., Krishna, A., Hegde, V. I., Agrawal, A., Choudhary, A., & Wolverton, C. (2017). Physical Review B, 96, 24104.

    Article  ADS  Google Scholar 

  64. Rupp, M., Tkatchenko, A., Muller, K.-R., & von Lilienfeld, O. A. (2012). Physical Review Letters, 108, 58301.

    Article  ADS  Google Scholar 

  65. Carrete, J., Li, W., Mingo, N., Wang, S., & Curtarolo, S. (2014). Physical Review X, 4, 11019.

    Article  Google Scholar 

  66. Ward, L., & Wolverton, C. (2017). Current Opinion in Solid State and Materials Science, 21, 167.

    Article  ADS  Google Scholar 

  67. Mauro, J. C., Tandia, A., Vargheese, K. D., Mauro, Y. Z., & Smedskjaer, M. M. (2016). Chemistry of Materials, 28, 4267.

    Article  Google Scholar 

  68. Bucholz, E. W., Kong, C. S., Marchman, K. R., Sawyer, W. G., Phillpot, S. R., Sinnott, S. B., & Rajan, K. (2012). Tribology Letters, 47, 211.

    Article  Google Scholar 

  69. Sparks, T. D., Gaultois, M. W., Oliynyk, A., Brgoch, J., & Meredig, B. (2015). Scripta Materialia, 111, 10.

    Article  Google Scholar 

  70. Mannodi-Kanakkithodi, A., Chandrasekaran, A., Kim, C., Huan, T. D., Pilania, G., Botu, V., & Ramprasad, R. (2017). Materials Today. https://doi.org/10.1016/j.mattod.2017.11.021

    Article  Google Scholar 

  71. Faber, F. A., Lindmaa, A., von Lilienfeld, O. A., & Armiento, R. (2016). Physical Review Letters, 117, 135502.

    Article  ADS  Google Scholar 

  72. Ren, F., Ward, L., Williams, T., Laws, K. J., Wolverton, C., Hattrick-Simpers, J., & Mehta, A., Science Advances, 4, eaaq1566; Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., Tanaka, I., Physical Review B, 95, 144110.

    Google Scholar 

  73. Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., & Tanaka, I. (2017). Physical Review B, 95, 144110.

    Article  ADS  Google Scholar 

  74. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). NPJ Computational Materials, 3, 54.

    Article  ADS  Google Scholar 

  75. Kalidindi, S. R. (2012). ISRN Materials Science, 2012, 1.

    Google Scholar 

  76. McKinney, W. (2010). Proceedings of the 9th Python in Science Conference (Vol. 1697900, p. 51).

    Google Scholar 

  77. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Journal of Machine Learning Research, 12, 2825.

    Google Scholar 

  78. Millman, K. J., & Aivazis, M. (2011). Computing in Science and Engineering, 13, 9.

    Article  Google Scholar 

  79. van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). Computing in Science and Engineering, 13, 22.

    Article  Google Scholar 

  80. Perez, F., & Granger, B. E. (2007). Computing in Science and Engineering, 9, 21.

    Google Scholar 

  81. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). APL Materials, 1, 11002.

    Article  ADS  Google Scholar 

  82. O’Mara, J., Meredig, B., & Michel, K. (2016). JOM, 68, 2031. https://citrination.com

  83. https://mpds.io/

  84. Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., & Foster, I. (2016). JOM Journal of the Minerals Metals and Materials Society, 68, 2045.

    Article  Google Scholar 

  85. Ward, L., Dunn, A., Faghaninia, A., Zimmermann, N. E., Bajaj, S., Wang, Q., Montoya, J., Chen, J., Bystrom, K., Dylla, M., & Chard, K., Matminer: An open source toolkit for materials data mining.

    Google Scholar 

  86. Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Lukauskas, S., Gemperline, D. C., Augspurger, T., Halchenko, Y., Cole, J. B., Warmenhoven, J., de Ruiter, J., Pye, C., Hoyer, S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P., Martin, M., … Qalieh, A. (2017). https://doi.org/10.5281/ZENODO.883859

  87. Hunter, J. D. (2007). Computing in Science and Engineering, 9, 90.

    Article  ADS  Google Scholar 

  88. https://plot.ly/

  89. https://doi.org/10.1016/j.commatsci.2012.10.028

  90. Oliphant, T. E. (2007). Computing in Science & Engineering, 9, 10.

    Article  Google Scholar 

  91. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., Ceder, G. (2010). Inorganic Chemistry, 656.

    Google Scholar 

  92. Gonze, X., Rignanese, G. M., Verstraete, M. J., Beuken, J. M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami, M., Ghosez, P., Veithen, M., Raty, J. Y., Olevano, V., Bruneval, F., Reining, L., Godby, R. W., Onida, G., Hamann, D. R., & Allan, D. C. (2005). Zeitschrift für Kristallographie, 220, 558.

    Article  ADS  Google Scholar 

  93. Hester, J. R. (2006). Journal of Applied Crystallography, 39, 621.

    Article  Google Scholar 

  94. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Journal of Cheminformatics, 3, 33.

    Google Scholar 

  95. Kresse, G., & Furthmuller, J. (1996). Physical Review B, 54, 11169.

    Article  ADS  Google Scholar 

  96. Bahn, S. R., & Jacobsen, K. W. (2002). Computer Science Engineering, 4, 56.

    Article  Google Scholar 

  97. Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Physical Review B, 44, 943.

    Google Scholar 

  98. Anisimov, V. I., Aryasetiawan, F., & Lichtenstein, A. I. (1997).Journal of Physics: Condensation Matter, 9, 767.

    Google Scholar 

  99. Liechtenstein, A. I., Anisimov, V. I., & Zaanen, J. (1995). Physical Review B, 52, R5467.

    Article  ADS  Google Scholar 

  100. Jain, A., Hautier, G., Ong, S., Moore, C., Fischer, C., Persson, K., & Ceder, G. (2011). Physical Review B, 84, 045115.

    Article  ADS  Google Scholar 

  101. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D., & Ceder, G. (2004). Physical Review B, 70, 235121.

    Article  ADS  Google Scholar 

  102. Wang, L., Maxisch, T., & Ceder, G. (2006). Physical Review B, 73, 195107.

    Article  ADS  Google Scholar 

  103. Ong, S. P., Wang, L., Kang, B., & Ceder, G. (2008). Chemistry of Materials, 20.

    Google Scholar 

  104. Ong, S. P., Jain, A., Hautier, G., Kang, B., & Ceder, G. (2010). Electrochemistry Communications, 12, 427.

    Google Scholar 

  105. Fidan, S., Oktay, H., Polat, S., & Ozturk, S. (2019). An artificial neural network model to predict the thermal properties of concrete using different neurons and activation functions. Advances in Materials Science and Engineering, 2019, 3831813.

    Article  Google Scholar 

  106. Swaidani, A. M., & Khwies, W. T. (2018). Applicability of artificial neural networks to predict mechanical and permeability properties of volcanic scoria-based concrete. Advances in Civil Engineering, 2018, 5207962.

    Google Scholar 

  107. Zhang, Z., Barkoula, N. M., Karger-Kocsis, J., & Friedrich, K. (2003). Artificial neural network predictions on erosive wear of polymers. Wear, 255, 708–713.

    Article  Google Scholar 

  108. Roy, N. K., Potter, W. D., & Landau, D. P. (2006). Polymer property prediction and optimization using neural networks. IEEE Transactions on Neural Networks, 17, 1001–1014.

    Article  Google Scholar 

  109. Kumar, G. V., Pramod, R., Rao, C. S. P., & Gouda, P. S. (2018). Artificial neural network prediction on wear of Al6061 alloy metal matrix composites reinforced with-Al2O3. Materials Today Proceedings, 5, 11268–11276.

    Article  Google Scholar 

  110. Scott, D. J., Coveney, P. V., Kilner, J. A., Rossiny, J. C. H., & Alford, N. M. N. (2007). Prediction of the functional properties of ceramic materials from composition using artificial neural networks. Journal of the European Ceramic Society, 27, 4425–4435.

    Article  Google Scholar 

  111. Moravec, H. (1988). Mind Children. Harvard University Press.

    Google Scholar 

  112. Nath, P., Plata, J. J., Usanmaz, D., Orabi, R. A., Fornari, M., Nardelli, M. B., Toher, C., & Curtarolo, S. (2016). High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation. Computational Materials Science, 125, 82–91.

    Article  Google Scholar 

  113. Sparks, T. D., Gaultois, M. W., Oliynyk, A., Brgoch, J., & Meredig, B. (2016). Data mining our way to the next generation of thermoelectrics. Scripta Materialia, 111, 10–15.

    Article  Google Scholar 

  114. Xue, D., Yuan, R., Zhou, Y., Balachandran, P. V., Ding, X., Sun, J., & Lookman, T. (2017). An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Materialia, 125, 532–541.

    Article  ADS  Google Scholar 

  115. Thankachan, T., Prakash, K. S., Pleass, C. D., Rammasamy, D., Prabakaran, B., & Jothi, S. (2017). Artificial neural network to predict the degraded mechanical properties of metallic materials due to the presence of hydrogen. International Journal of Hydrogen Energy, 42, 28612–28621.

    Article  Google Scholar 

  116. Zhu, Z., Dong, B., Guo, H., Yang, T., & Zhang, Z. (2020). Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning. Chinese Physics B, 29, 046101.

    Article  ADS  Google Scholar 

  117. Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V., & Amal, R. (2019). Machine learning for accelerated discovery of solar photocatalysts. ACS Catalysis, 9, 11774–11787.

    Article  Google Scholar 

  118. Toma, F. L., Guessasma, S., Klein, D., Montavon, G., Bertrand, G., & Coddet, C. (2004). Neural computation to predict TiO2 photocatalytic efficiency for nitrogen oxides removal. Journal of Photochemistry and Photobiology, A: Chemistry, 165, 91–96.

    Article  Google Scholar 

  119. Oliveros, E., Benoit-Marquie, F., Puech-Costes, E., Maurette, M. T., & Nascimento, C. A. O. (1998). Neural network modeling of the photocatalytic degradation of 2,4-dihydroxybenzoic acid in aqueous solution. Analusis, 26, 326–332.

    Article  Google Scholar 

  120. Emilio, C. A., Litter, M. I., & Magallanes, J. F. (2002). Semiempirical modeling with application of artificial neural networks for the photocatalytic reaction of ethylenediaminetetraacetic acid (EDTA) over titanium oxide (TiO2). Helvetica Chimica Acta, 85, 799–813.

    Article  Google Scholar 

  121. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L., Sanvito, S., & Buongiorno-Nardelli, M., et al. (2012). Aflowlib. Org: A distributed materials properties repository from high-throughput Ab initio calculations. Computational Materials Science, 58, 227−235.

    Google Scholar 

  122. Belsky, A., Hellenbrandt, M., Karen, V. L., & Luksch, P. (2002). New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design. Acta Crystallographica Section B: Structural Science, 58(3), 364−369.

    Google Scholar 

  123. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002.

    Article  ADS  Google Scholar 

  124. Landis, D. D., Hummelshoj, J. S., Nestorov, S., Greeley, J., Dulak, M., Bligaard, T., Norskov, J. K., & Jacobsen, K. W. (2012). The computational materials repository. Computing in Science and Engineering, 14(6), 51.

    Article  Google Scholar 

  125. Kirklin, S., Saal, J. E., Meredig, B., Thompson, A., Doak, J. W., Aykol, M., Rühl, S., & Wolverton, C. (2015). The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. NPJ Computational Materials, 1, 15010.

    Article  ADS  Google Scholar 

  126. Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., & Le Bail, A. (2009). Crystallography open database—An open-access collection of crystal structures. Journal of Applied Crystallography, 42(4), 726−729.

    Google Scholar 

  127. Winther, K., Hoffmann, M. J., Mamun, O., Boes, J. R., Nørskov, J. K., Bajdich, M., & Bligaard, T. (2019). Catalysis-Hub. Org: An open electronic structure database for surface reactions. Scientific Data, 6(1), 75.

    Google Scholar 

  128. Linstrom, P. J., & Mallard, W. G. (2001). The NIST chemistry webbook: A chemical data resource on the internet. Journal of Chemical and Engineering Data, 46(5), 1059–1063.

    Article  Google Scholar 

  129. Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., & Foster, I. (2016). The materials data facility: Data services to advance materials science research. JOM Journal of the Minerals Metals and Materials Society, 68(8), 2045–2052.

    Article  Google Scholar 

  130. Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., et al. (2016). Pubchem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213.

    Article  Google Scholar 

  131. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  132. Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232. https://doi.org/10.2307/2699986

    Article  MathSciNet  MATH  Google Scholar 

  133. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519

    Article  Google Scholar 

  134. McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics., 5(4), 115–133. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  135. Werbos, P. J. (1975). Beyond regression: New tools for prediction and analysis in the behavioral sciences.

    Google Scholar 

  136. https://community.tibco.com/wiki/randomforest-template-tibco-spotfirer-wiki-page, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68995764.

  137. Multilayer Perceptron. https://medium.com/codex/introduction-to-how-an-multilayer-perceptron-works-but-without-complicated-math-a423979897ac

  138. Tao, Q., Lu, T., Sheng, Y., Li, L., Lu, W., & Li, M. (2021). Machine learning aided design of perovskite oxide materials for photocatalytic water splitting. Journal of Energy Chemistry, 60, 351–359. ISSN 2095-4956, https://doi.org/10.1016/j.jechem.2021.01.035. https://www.sciencedirect.com/science/article/pii/S2095495621000644

  139. Zhang, Q., Chang, D., Zhai, X., & Lu, W. (2018). Chemometrics and Intelligent Laboratory Systems, 177, 26–34.

    Article  Google Scholar 

  140. Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M. A. L. (2019). npj Computational Materials, 5, 83.

    Google Scholar 

  141. Wang, H., Ji, Y., & Li, Y. (2019). WIREs Computational Molecular Science, 10, e1421. Perceptron. https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron.

    Google Scholar 

  142. Zhai, X., Chen, M., Lu, W., & Chang, D. (2018). Journal of Mathematical Chemistry, 56, 1744–1758. Multilayer Perceptron. https://medium.com/codex/introduction-to-how-an-multilayer-perceptron-works-but-without-complicated-math-a423979897ac

    Article  MathSciNet  Google Scholar 

  143. Peng, H., Long, F., & Ding, C. (2005). IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226–1238.

    Article  Google Scholar 

  144. Rodriguez-Galiano, V. F., Luque-Espinar, J. A., Chica-Olmo, M., & Mendes, M. P. (2018).Science of the Total Environment, 624, 661–672.

    Google Scholar 

  145. Yusof, M. H. M., Mokhtar, M. R., Zain, A. M., & Maple, C. (2018). International Journal of Advanced Computer Science and Applications, 9, 509–517.

    Article  Google Scholar 

  146. Classification using Random Forest. By Venkata Jagannath. https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=68995764

  147. Parida, K. M., Reddy, K. H., Martha, S., Das, D. P., & Biswal, N. (2010). International Journal of Hydrogen Energy, 35, 12161–12168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiju Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priyanga, G.S., Pransu, G., Krishna, H., Thomas, T. (2023). Discovery of Novel Photocatalysts Using Machine Learning Approach. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_11

Download citation

Publish with us

Policies and ethics