Skip to main content

Solar Cells and Relevant Machine Learning

  • Chapter
  • First Online:
Machine Learning for Advanced Functional Materials

Abstract

Machine learning (ML) and data science is the most emerging computation tool which has been recently incorporated in emerging fields of materials science and engineering including but not limited to solar cells. It helps us to optimize materials and their photovoltaic performance for various types of solar cells through algorithms and models, which is easy, cost-efficient, and rapid compared to conventional programming methods. Although the family of solar cells has been classified into various types based on their generations, however, the basic two types (i.e., organic, and inorganic solar cells) are more specific owing to the contrast in their materials, fabrication techniques, and corresponding characterizations. A large number of materials can be used for developing photoanode/photocathode in solar cells; however, it is too difficult and complex to design the most proficient one practically. In this chapter, we will comprehensively review ML about organic and inorganic solar cells, making a discussion about the use of machine learning, various classes of machine learning, common algorithms, and basic steps for ML. A detailed discussion about specific types of ML for solar cells and the application of ML for the prediction of suitable materials, optimization of device structure and fabrication processes, and reconstruction of measured data for solar cells are given. In the end, we shall cover the current research status and future challenges, and expected progress of ML, and will propose suggestions that can enhance the usefulness of machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaikh, M. R., Shaikh, S., Waghmare, S., Labade, S., & Tekale, A. (2017). A review paper on electricity generation from solar energy. International Journal for Research in Applied Science and Engineering Technology, 887. https://doi.org/10.22214/ijraset.2017.9272

  2. This month in physics history. https://www.aps.org/publications/apsnews/200904/physicshistory.cfm

  3. Fraas, L. M. (2014). History of solar cell development. In Low-Cost Solar Electric Power (p. 1).

    Google Scholar 

  4. Ibn-Mohammed, T., et al. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321–1344. https://doi.org/10.1016/j.rser.2017.05.095

    Article  Google Scholar 

  5. (PDF) Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration | published in Reviews in Inorganic Chemistry. https://www.researchgate.net/publication/343261055_Systematic_review_elucidating_the_generations_and_classifications_of_solar_cells_contributing_towards_environmental_sustainability_integration

  6. Ballaji, A., Mh, A., Swamy, K., Oommen, S., & Ankaiah, B. (2019). A detailed study on different generations of solar cell technologies with present scenario of solar PV efficiency and effect of cost on solar PV panel. International Journal of Research in Advent Technology, 7, 364–372. https://doi.org/10.32622/ijrat.74201963

    Article  Google Scholar 

  7. (PDF) Review on life cycle assessment of solar photovoltaic panels. https://www.researchgate.net/publication/338384189_Review_on_Life_Cycle_Assessment_of_Solar_Photovoltaic_Panels

  8. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. https://www.researchgate.net/publication/350641338_Pseudohalide_anion_engineering_for_a-FAPbI3_perovskite_solar_cells

  9. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science. https://www.science.org/doi/10.1126/science.abd4016

  10. Chebrolu, V. T., & Kim, H.-J. (2019). Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Journal of Materials Chemistry C, 7(17), 4911–4933. https://doi.org/10.1039/C8TC06476H

    Article  Google Scholar 

  11. Choudhary, R., & Gianey, H. K. (2017). Comprehensive review on supervised machine learning algorithms. in 2017 International Conference on Machine Learning and Data Science (MLDS) (pp. 37–43). https://doi.org/10.1109/MLDS.2017.11

  12. Mahmood, A., & Wang, J.-L. (2021). Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy & Environmental Science, 14(1), 90–105. https://doi.org/10.1039/D0EE02838J

    Article  Google Scholar 

  13. Parikh, N., et al. (2022). Is machine learning redefining the perovskite solar cells? Journal of Energy Chemistry, 66, 74–90. https://doi.org/10.1016/j.jechem.2021.07.020

    Article  Google Scholar 

  14. Practical Machine Learning in R | Wiley. Wiley.com. https://www.wiley.com/en-us/Practical+Machine+Learning+in+R-p-9781119591535

  15. Abdualgalil, B., & Abraham, S. (2020). Applications of machine learning algorithms and performance comparison: A review. in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE) (pp. 1–6). https://doi.org/10.1109/ic-ETITE47903.2020.490

  16. A review on machine learning algorithms to predict daylighting inside buildings—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0038092X20303509

  17. Sustainability | Free Full-Text | Review on Machine Learning Techniques for Developing Pavement Performance Prediction Models. https://www.mdpi.com/2071-1050/13/9/5248

  18. Sun, W., et al. (2019). Machine learning-assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Science Advances, 5(11), eaay4275. https://doi.org/10.1126/sciadv.aay4275

  19. Padula, D., & Troisi, A. (2019). Concurrent optimization of organic donor-acceptor pairs through machine learning. Advances Energy Materials, 9(40), 1902463. https://doi.org/10.1002/aenm.201902463

    Article  Google Scholar 

  20. Machine learning for accelerating the discovery of high-performance donor/acceptor pairs in non-fullerene organic solar cells | NPJ Computational Materials. https://www.nature.com/articles/s41524-020-00388-2

  21. Effect of increasing the descriptor set on machine learning prediction of small molecule-based organic solar cells | chemistry of materials. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c02325

  22. Pokuri, B. S. S., Ghosal, S., Kokate, A., Sarkar, S., & Ganapathysubramanian, B. (2019). Interpretable deep learning for guided microstructure-property explorations in photovoltaics. NPJ Computational Materials, 5(1). https://doi.org/10.1038/s41524-019-0231-y

  23. Sahu, H., & Ma, H. (2019). Unraveling correlations between molecular properties and device parameters of organic solar cells using machine learning. The Journal of Physical Chemistry Letters, 10(22), 7277–7284. https://doi.org/10.1021/acs.jpclett.9b02772

    Article  Google Scholar 

  24. Majeed, N., Saladina, M., Krompiec, M., Greedy, S., Deibel, C., & MacKenzie, R. C. I. (2020). Using deep machine learning to understand the physical performance bottlenecks in novel thin-film solar cells. Advanced Functional Materials, 30(7), 1907259. https://doi.org/10.1002/adfm.201907259

    Article  Google Scholar 

  25. Pilania, G., Balachandran, P. V., Kim, C., & Lookman, T. (2016). Finding new perovskite halides via machine learning. Frontier in Materials, 3. https://www.frontiersin.org/articles/10.3389/fmats.2016.00019

  26. Boosting photoelectric performance of thin film GaAs solar cell based on multi-objective optimization for solar energy utilization. Solar Energy, 230, 1122–1132. https://doi.org/10.1016/j.solener.2021.11.031

  27. A review on machine learning algorithms, tasks and applications. https://www.researchgate.net/publication/320609700_A_Review_on_Machine_Learning_Algorithms_Tasks_and_Applications

  28. Kim, S. M., Naqvi, S. D. H., Kang, M. G., Song, H.-E., & Ahn, S. (2022). Optical characterization and prediction with neural network modeling of various stoichiometries of perovskite materials using a hyperregression method. Nanomaterials Basel Switzerland, 12(6), 932. https://doi.org/10.3390/nano12060932

    Article  Google Scholar 

  29. Zhang, Q., et al. (2022). High-efficiency non-fullerene acceptors developed by machine learning and quantum chemistry. Advanced Science, 9(6), 2104742. https://doi.org/10.1002/advs.202104742

    Article  Google Scholar 

  30. Ye, Z., & Ouyang, D. (2021). Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms. Journal of Cheminformatics, 13(1), 98. https://doi.org/10.1186/s13321-021-00575-3

    Article  Google Scholar 

  31. Accelerated discovery of high-efficient N-annulated perylene organic sensitizers for solar cells via machine learning and quantum chemistry—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S2352492820326155

  32. Machine Learning—Based Charge Transport Computation for Pentacene—Lederer—2019—Advanced Theory and Simulations—Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.201800136

  33. Analysis and prediction of hydrothermally synthesized ZnO-based dye-sensitized solar cell properties using statistical and machine-learning techniques | ACS Omega. https://pubs.acs.org/doi/10.1021/acsomega.1c04521

  34. Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells—ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0038092X21007878

  35. Weston, L., & Stampfl, C. (2018). Physical Review Materials, 2(8), 085407. https://doi.org/10.1103/PhysRevMaterials.2.085407

  36. Machine learning approach to delineate the impact of material properties on solar cell device physics | ACS Omega. https://pubs.acs.org/doi/10.1021/acsomega.2c01076

  37. Applied Sciences | Free Full-Text | Prediction Model for the Performance of Different PV Modules Using Artificial Neural Networks | HTML. https://www.mdpi.com/2076-3417/12/7/3349/htm

  38. Huwig, K., Fan, C., & Springborg, M. (2017). From properties to materials: An efficient and simple approach. The Journal of Chemical Physics, 147(23), 234105. https://doi.org/10.1063/1.5009548

    Article  ADS  Google Scholar 

  39. Predictions and Strategies Learned from Machine Learning to Develop High‐Performing Perovskite Solar Cells—Li—2019—Advanced Energy Materials—Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201901891

  40. Zhao, Z.-W., del Cueto, M., & Troisi, A. (2022). Limitations of machine learning models when predicting compounds with completely new chemistries: possible improvements applied to the discovery of new non-fullerene acceptors. Digital Discovery, 1(3), 266–276. https://doi.org/10.1039/D2DD00004K

    Article  Google Scholar 

  41. Mahmood, A., Tang, A., Wang, X., & Zhou, E. (2019). First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions. Physical Chemistry Chemical Physics, 21(4), 2128–2139. https://doi.org/10.1039/C8CP05763J

    Article  Google Scholar 

  42. Xiao, B., et al. (2017). Non-fullerene acceptors with A2 = A1 – D − A1 = A2 Skeleton containing Benzothiadiazole and Thiazolidine-2,4-Dione for high-performance P3HT-based organic solar cells. Solar RRL, 1(11), 1700166. https://doi.org/10.1002/solr.201700166

    Article  Google Scholar 

  43. Combining electronic and structural features in machine learning models to predict organic solar cells properties—Materials Horizons (RSC Publishing). https://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01135d

  44. Lan, F., Jiang, M., Wei, F., Tao, Q., & Li, G. (2016). Study of annealing induced nanoscale morphology change in organic solar cells with machine learning. in 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO) (pp. 329–332). https://doi.org/10.1109/NANO.2016.7751398

  45. Al-Saban, O., & Abdellatif, S. O. (2021). Optoelectronic materials informatics: Utilizing random-forest machine learning in optimizing the harvesting capabilities of mesostructured-based solar cells. in 2021 International Telecommunications Conference (ITC-Egypt) (pp. 1–4). https://doi.org/10.1109/ITC-Egypt52936.2021.9513898

  46. Yan, X., et al. (2013). Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings. Advanced Functional Materials, 23(5), 583–590. https://doi.org/10.1002/adfm.201201032

    Article  Google Scholar 

  47. Guo, X., et al. (2014). Design of broadband omnidirectional antireflection coatings using ant colony algorithm. Optics Express, 22(104), A1137–A1144. https://doi.org/10.1364/OE.22.0A1137

    Article  Google Scholar 

  48. Lobet, M., et al. (2020). Opal-like photonic structuring of perovskite solar cells using a genetic algorithm approach. Applied Sciences, 10(5). https://doi.org/10.3390/app10051783

  49. Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum. https://opg.optica.org/oe/abstract.cfm?uri=oe-19-s4-a87

  50. Wang, D., & Su, G. (2015). New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells. Scientific Reports, 4(1), 7165. https://doi.org/10.1038/srep07165

    Article  MathSciNet  Google Scholar 

  51. Jäger, K., Fischer, M., van Swaaij, R. A. C. M. M., & Zeman, M. (2013). Designing optimized nano textures for thin-film silicon solar cells. Optics Express, 21(S4), A656. https://doi.org/10.1364/OE.21.00A656

    Article  Google Scholar 

  52. Alsaigh, R. E., Alsaigh, R. E., Bauer, R., Lavery, M. P. J., & Lavery, M. P. J. (2020). Multi-layer light trapping structures for enhanced solar collection. Optics Express, 28(21), 31714–31728. https://doi.org/10.1364/OE.403990

    Article  ADS  Google Scholar 

  53. Schubert, M. F., Mont, F. W., Chhajed, S., Poxson, D. J., Kim, J. K., & Schubert, E. F. (2008). Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. Optics Express, 16(8), 5290–5298. https://doi.org/10.1364/OE.16.005290

    Article  ADS  Google Scholar 

  54. Zhang, Y.-J., Li, Y.-J., Lin, J., Fang, C.-L., & Liu, S.-Y. (2018). Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells. Chinese Physics B, 27(5), 058801. https://doi.org/10.1088/1674-1056/27/5/058801

    Article  ADS  Google Scholar 

  55. Al-Sabana, O., & Abdellatif, S. O. (2022). Optoelectronic devices informatics: optimizing DSSC performance using random-forest machine learning algorithm. Optoelectronics Letters, 18(3), 148–151. https://doi.org/10.1007/s11801-022-1115-9

    Article  ADS  Google Scholar 

  56. Alì, G., Butera, F., & Rotundo, N. (2013). Geometrical and physical optimization of a photovoltaic cell by means of a genetic algorithm. Journal of Computational Electronics, 13(1), 323.

    Article  Google Scholar 

  57. Nagasawa, S., Al-Naamani, E., & Saeki, A. (2018). Computer-aided screening of conjugated polymers for organic solar cell: Classification by random forest. The Journal of Physical Chemistry Letters. https://doi.org/10.1021/acs.jpclett.8b00635

    Article  Google Scholar 

  58. Radosavljević, S., Radovanović, J., Milanović, V., & Tomić, S. (2014). Frequency up-conversion in nonpolar a-plane GaN/AlGaN based multiple quantum wells optimized for applications with silicon solar cells. Journal of Applied Physics, 116(3), 033703. https://doi.org/10.1063/1.4890029

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Abdul Basit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basit, M.A., Aanish Ali, M., Yasmeen, M. (2023). Solar Cells and Relevant Machine Learning. In: Joshi, N., Kushvaha, V., Madhushri, P. (eds) Machine Learning for Advanced Functional Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-0393-1_1

Download citation

Publish with us

Policies and ethics