Skip to main content

A Quasi-static Computational Model for Fracture in Multidomain Structures with Inclusions

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Numerical Modelling in Engineering

Abstract

A computational model for dealing with fracture in materials with inclusions is considered. The proposed model allows to predict crack initiation and growth in quasi-brittle materials. The inclusions cause that cracks may appear inside the matrix materials or along matrix-inclusion interfaces. The present model can treat them both using two internal variables in a form considered in damage mechanics so that crack formation process is a consequence of a material degradation. The first of the damage variables is defined at matrix-inclusion interfaces which are represented by a thin degradable adhesive layer so that an adequate stress-strain relation is rendered as in common cohesive zone models. The second variable is defined in the structural domains, matrix plus inclusions, as a phase-field fracture variable which causes domain elastic properties degradation in a narrow material strip that results in a diffuse form of a crack. Both these damaging schemes are expressed by a quasi-static energy evolution process. The numerical solution approach is thus rendered from a variational form obtained by a staggered time-stepping procedure related to a separation of deformation variables from the damage ones and using sequential quadratic programming algorithms implemented together within a MATLAB finite element code. The numerical simulations with the model include simplified structural and material elements containing one or more inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberty J, Carstensen C, Funken S, Klose R (2002) Matlab implementation of the finite element method in elasticity. Computing 69:239–263. https://doi.org/10.1007/s00607-002-1459-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via \(\gamma \)-convergence. Commun Pure Appl Math 43(8):999–1036. https://doi.org/10.1002/cpa.3160430805

    Article  MathSciNet  MATH  Google Scholar 

  3. Besson J, Cailletaud G, Chaboche J, Forest S (2010) Non-linear mechanics of materials. Springer, Dordrecht

    Book  MATH  Google Scholar 

  4. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    Article  MathSciNet  MATH  Google Scholar 

  5. Dal Maso G (2012) An introduction to \(\Gamma \)-convergence, vol 8. Springer Science & Business Media

    Google Scholar 

  6. Del Piero G (2013) A variational approach to fracture and other inelastic phenomena. J Elast 112:3–77

    Article  MathSciNet  MATH  Google Scholar 

  7. Dostál Z (2006) An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum. Computing 78(4):311–328

    Article  MathSciNet  MATH  Google Scholar 

  8. Dostál Z (2009) Optimal quadratic programming algorithms, springer optimization and its applications, vol 23. Springer, Berlin

    Google Scholar 

  9. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Frémond M (1995) Dissipation dans l’adhérence des solides. CR Acad Sci, Paris, Sér.II 300:709–714

    Google Scholar 

  11. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Google Scholar 

  12. Kružík M, Roubíček T (2019) Mathematical methods in continuum mechanics of solids. Interaction of mechanics and mathematics. Springer, Switzerland

    Book  MATH  Google Scholar 

  13. Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Berlin

    Google Scholar 

  14. Maugin G (2015) The saga of internal variables of state in continuum thermo-mechanics. Mech Res Commun 69:79–86

    Article  Google Scholar 

  15. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Method Appl Mech Eng 199(45–48):2765–2778. https://doi.org/10.1016/j.cma.2010.04.011

    Article  MathSciNet  MATH  Google Scholar 

  16. Molnár G, Gravouil A (2017) 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem Anal Des 130:27–38. https://doi.org/10.1016/j.finel.2017.03.002

    Article  Google Scholar 

  17. Paggi M, Reinoso J (2017) Revisiting the problem of a crack impinging on an interface: a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Comput Method Appl Mech Eng 321:145–172. https://doi.org/10.1016/j.cma.2017.04.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Raous M, Cangemi L, Cocu M (1999) A consistent model coupling adhesion, friction and unilateral contact. Comput Meth Appl Mech Eng 177(6):383–399

    Article  MathSciNet  MATH  Google Scholar 

  19. Roubíček T, Panagiotopoulos C, Mantič V (2015) Local-solution approach to quasistatic rate-independent mixed-mode delamination. Math Models Methods Appl Sci 25(7):1337–1364

    Article  MathSciNet  MATH  Google Scholar 

  20. Roubíček T (2013) Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity. SIAM J Math Anal 45(1):101–126. https://doi.org/10.1137/12088286X

    Article  MathSciNet  MATH  Google Scholar 

  21. Roubíček T, Panagiotopoulos C, Mantič V (2013) Quasistatic adhesive contact of visco-elastic bodies and its numerical treatment for very small viscosity. Zeitschrift angew Math Mech 93:823–840

    Article  MathSciNet  MATH  Google Scholar 

  22. Sargado JM, Keilegavlen E, Berre I, Nordbotten JM (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489. https://doi.org/10.1016/j.jmps.2017.10.015

    Article  MathSciNet  MATH  Google Scholar 

  23. Sutradhar A, Paulino G, Gray L (2008) The symmetric Galerkin boundary element method. Springer, Berlin

    MATH  Google Scholar 

  24. Tanné E, Li T, Bourdin B, Marigo JJ, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99. https://doi.org/10.1016/j.jmps.2017.09.006

    Article  MathSciNet  Google Scholar 

  25. Vodička R (2016) A quasi-static interface damage model with cohesive cracks: SQP-SGBEM implementation. Eng Anal Bound Elem 62:123–140

    Article  MathSciNet  MATH  Google Scholar 

  26. Vodička R (2019) On coupling of interface and phase-field damage models for quasi-brittle fracture. Acta Mechanica Slovaca 23(3):42–48

    Article  Google Scholar 

  27. Vodička R (2020) A computational model of interface and phase-field fracture. AIP Conf Proc 2309:020002

    Google Scholar 

  28. Vodička R, Kormaníková E, Kšiňan F (2018) Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with coulomb friction. Int J Frac 211(1–2):163–182. https://doi.org/10.1007/s10704-018-0281-z

    Article  Google Scholar 

  29. Vodička R, Mantič V (2017) An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete Cont Dyn Syst–Ser S 10(6):1539–1561 (2017)

    Google Scholar 

  30. Vodička R, Mantič V, París F (2007) Symmetric variational formulation of BIE for domain decomposition problems in elasticity—an SGBEM approach for nonconforming discretizations of curved interfaces. CMES—Comp Model Eng 17(3):173–203

    MathSciNet  MATH  Google Scholar 

  31. Vodička R, Mantič V, Roubíček T (2014) Energetic versus maximally-dissipative local solutions of a quasi-static rate-independent mixed-mode delamination model. Meccanica 49(12):2933–296

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang Q, Feng Y, Zhou W, Cheng Y, Ma G (2020) A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Comput Methods Appl Mech Eng 370:113270. https://doi.org/10.1016/j.cma.2020.113270

  33. Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99. https://doi.org/10.1016/j.jmps.2017.03.015

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from The Ministry of Education, Science, Research and Sport of the Slovak Republic by the grants VEGA 1/0374/19 and VEGA 1/0363/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Vodička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vodička, R. (2023). A Quasi-static Computational Model for Fracture in Multidomain Structures with Inclusions. In: Abdel Wahab, M. (eds) Proceedings of the 5th International Conference on Numerical Modelling in Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-0373-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0373-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0372-6

  • Online ISBN: 978-981-99-0373-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics