Skip to main content

High Anti-ablation Performance of Graphene/CuW Composite for Ultrahigh Voltage Electrical Contacts

  • Conference paper
  • First Online:
The Proceedings of the 17th Annual Conference of China Electrotechnical Society (ACCES 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1012))

Included in the following conference series:

  • 891 Accesses

Abstract

CuW80 composites with high anti-ablation property and low weight density has promising candidate on electrical contact device, which provides better comprehensive performance and light-weight for their application in high voltage direct current (HVDC). Despite the mature development of commercial electrical contact made by CuW80, it cannot satisfy the future practical requirements with ultrahigh voltage, large capacity and light-weight. How to improve the performance of CuW80 electrical contact remains a challenge. Here, we proposed graphene-modified CuW80 composite with high anti-ablation property, low density and good conductivity fabricated by spark plasma sintering method. By controlling the weight ratio of graphene, the metallographic structure and the grain size of tungsten particle can be modified, resulting in the improvement of hardness performance of graphene/CuW80 composite. What’s more, the graphene/CuW80 composite exhibits remarkable enhancement of anti-ablation property with more dispersed arc and flat arc erosion area, which attribute to that the lower work function of graphene and increased phase interface between graphene and copper or tungsten. This graphene/CuW80 composites paves the way to develop novel electric contact materials with perfect performance for potential application in ultrahigh voltage field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, L., Chen, Y.: Evaluation of future water use for electricity generation under different energy development scenarios in china. Sustainability 10(2), 30 (2017)

    Article  Google Scholar 

  2. Wang, Y.L., Liang, S.H., Li, Z.B.: Experiment and simulation analysis of surface structure for CuW contact after arc erosion. Mater. Sci. Technol. 31(2), 243–247 (2015)

    Article  Google Scholar 

  3. Shi, T., Han, H.L.: Accommodation capacity analysis of the large-scale PV power generation access to regional power grid. Adv. Mater. Res. 772, 630–633 (2013)

    Article  Google Scholar 

  4. Ma, J.W., Liu, R.C., Ma, Y.Q.: Effects of high-pressure treatment on the hardness and electrical resistivity of CuW alloy. Recent Patents Mater. Sci. 7(2), 57–63 (2014)

    Google Scholar 

  5. Slade, P.G.: Advances in material development for high power, vacuum interrupter contacts. IEEE Trans. Compon. Packag. Manuf. Technol. Part A: 17(1), 96–106 (1994)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Wu, Y.C., Yu, F.W., Chen, J.L.: Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles. Int. J. Refract. Metal Hard Mater. 26, 525–529 (2008)

    Article  Google Scholar 

  7. Yang, X., Liang, S., Wang, X., Xiao, P., Fan, Z.: Effect of WC and CeO2 on microstructure and properties of W–Cu electrical contact material. Int. J. Refract. Metals Hard Mater. 28(2), 305–311 (2010)

    Article  Google Scholar 

  8. Yang, X., Zou, J., Xiao, P., Wang, X.: Effects of Zr addition on properties and vacuum arc characteristics of Cu-W alloy. Vacuum 106, 16–20 (2014)

    Article  Google Scholar 

  9. Zhang, Q., et al.: Microstructure and properties of W Cu composites reinforced by in-situ generated WC. Int. J. Refract. Metals Hard Mater. 99, 105585 (2021)

    Article  Google Scholar 

  10. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5695), 666–669 (2004)

    Article  Google Scholar 

  11. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  Google Scholar 

  12. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)

    Article  Google Scholar 

  13. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  Google Scholar 

  14. Luechinger, N.A., Athanassiou, E.K., Stark, W.J.: Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19(44), 445201 (2008)

    Article  Google Scholar 

  15. Jedrzejewska, A., Sibera, D., Narkiewicz, U., Pełech, R., Jedrzejewski, R.: Effect of synthesis parameters of graphene/Fe2O3 nanocomposites on their structural and electrical conductivity properties. Acta Phys. Pol. A 132(4), 1424–1429 (2017)

    Article  Google Scholar 

  16. Zhang, H., Wang, X., Li, Y., Guo, C., Zhang, C.: Preparation and characterization of silver-doped graphene-reinforced silver matrix bulk composite as a novel electrical contact material. Appl. Phys. A 125(2), 86 (2019)

    Article  Google Scholar 

  17. Liu, H.C., Teng, X., Wu, W.B., Wu, X.W., Leng, J.F., Geng, H.: Effect of graphene addition on properties of Cu-based composites for electrical contacts. Mater. Res. Express 4, 66506 (2017)

    Article  Google Scholar 

  18. Wu, M.L., Hou, B.S., Shu, S.C.: High oxidation resistance of CVD graphene-reinforced copper matrix composites. Nanomaterials 9, 498 (2019)

    Article  Google Scholar 

  19. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1/2), 47–57 (2007)

    Article  Google Scholar 

  20. Giovannetti, G., Khomyakov, P., Brocks, G., Karpan, V.M., van den Brink, J., Kelly, P.J.: Doping graphene with Metal contacts. Phys. Rev. Lett. 101(2), 268–281 (2008)

    Article  Google Scholar 

  21. Ling, X., et al.: Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett. 14(6), 3033–3040 (2014)

    Article  Google Scholar 

  22. Xu, H., Xie, L.M., Zhang, H.L., Zhang, J.: Effect of graphene fermi level on the raman scattering intensity of molecules on graphene. ACS Nano 5(7), 5338–5344 (2011)

    Article  Google Scholar 

  23. Li, Z.B.: Density functional theory for field emission from carbon nano-structures. Ultramicroscopy 159(2), 162–172 (2015)

    Article  Google Scholar 

  24. Yu, S.S., Zheng, W.T.: Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2, 1069–1082 (2010)

    Article  Google Scholar 

  25. Wang, X., Liang, S., Yang, P., Fan, Z.: Effect of Al2O3 content on electrical breakdown properties of Al2O3/Cu composite. J. Mater. Eng. Perform. 19(9), 1330–1336 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

State Grid Corporation of China science and technology Foundation (5500-201958505A-0-0-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Beijing Paike Culture Commu. Co., Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, Y. et al. (2023). High Anti-ablation Performance of Graphene/CuW Composite for Ultrahigh Voltage Electrical Contacts. In: Yang, Q., Li, J., Xie, K., Hu, J. (eds) The Proceedings of the 17th Annual Conference of China Electrotechnical Society. ACCES 2022. Lecture Notes in Electrical Engineering, vol 1012. Springer, Singapore. https://doi.org/10.1007/978-981-99-0357-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0357-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0356-6

  • Online ISBN: 978-981-99-0357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics