Skip to main content

Traumatic Dislocation

  • Chapter
  • First Online:
Shoulderology
  • 294 Accesses

Abstract

Shoulder dislocation is classified into four types based on the direction of dislocation: anterior, posterior, inferior (luxatio erecta), and superior dislocation. Inferior dislocation is so rare that it is reported as a rare case. We published a case report of bilateral luxatio erecta [1]. Superior dislocation does not occur unless the acromion is fractured and displaced. Thus, shoulder dislocation usually refers to either anterior or posterior dislocation. The anterior dislocation accounts for 98% of shoulder dislocation, far more common than the posterior one [2]. Since my personal experience is very limited regarding the posterior dislocation, I would like to focus on anterior dislocation in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsuchida T, et al. Luxatio erecta of bilateral shoulders. J Shoulder Elb Surg. 2001;10(6):595–7.

    Article  CAS  Google Scholar 

  2. Rowe CR. Prognosis in dislocations of the shoulder. J Bone Jt Surg Am. 1956;38-a(5):957–77.

    Article  CAS  Google Scholar 

  3. Kiviluoto O, et al. Immobilization after primary dislocation of the shoulder. Acta Orthop Scand. 1980;51(6):915–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hoelen MA, Burgers AM, Rozing PM. Prognosis of primary anterior shoulder dislocation in young adults. Arch Orthop Trauma Surg. 1990;110(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  5. Itoi E, et al. Immobilization in external rotation after shoulder dislocation reduces the risk of recurrence. A randomized controlled trial. J Bone Jt Surg Am. 2007;89(10):2124–31.

    Article  Google Scholar 

  6. Simonet WT, et al. Incidence of anterior shoulder dislocation in Olmsted County, Minnesota. Clin Orthop Relat Res. 1984;186:186–91.

    Article  Google Scholar 

  7. Zacchilli MA, Owens BD. Epidemiology of shoulder dislocations presenting to emergency departments in the United States. J Bone Jt Surg Am. 2010;92(3):542–9.

    Article  Google Scholar 

  8. Trojan JD, et al. Epidemiology of shoulder instability injuries in collision collegiate sports from 2009 to 2014. Arthroscopy. 2020;36(1):36–43.

    Article  PubMed  Google Scholar 

  9. Montgomery C, et al. Video analysis of shoulder dislocations in Rugby: insights into the dislocating mechanisms. Am J Sports Med. 2019;47(14):3469–75.

    Article  PubMed  Google Scholar 

  10. Owens BD, et al. Pathoanatomy of first-time, traumatic, anterior glenohumeral subluxation events. J Bone Jt Surg Am. 2010;92(7):1605–11.

    Article  Google Scholar 

  11. Taylor DC, Arciero RA. Pathologic changes associated with shoulder dislocations. Arthroscopic and physical examination findings in first-time, traumatic anterior dislocations. Am J Sports Med. 1997;25(3):306–11.

    Article  CAS  PubMed  Google Scholar 

  12. Urayama M, et al. Capsular elongation in shoulders with recurrent anterior dislocation. Quantitative assessment with magnetic resonance arthrography. Am J Sports Med. 2003;31(1):64–7.

    Article  PubMed  Google Scholar 

  13. Kurokawa D, et al. The prevalence of a large Hill–Sachs lesion that needs to be treated. J Shoulder Elb Surg. 2013;22(9):1285–9.

    Article  Google Scholar 

  14. Itoi E, et al. The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Jt Surg Am. 2000;82(1):35–46.

    Article  CAS  Google Scholar 

  15. Montgomery WH Jr, et al. Anteroinferior bone-grafting can restore stability in osseous glenoid defects. J Bone Jt Surg Am. 2005;87(9):1972–7.

    Article  Google Scholar 

  16. Kurokawa D, et al. Anterior tilt of the glenoid relative to the trunk: measurement using 3D-CT images. In: Presented at 39th annual meeting. Tokyo: Japan Shoulder Society; 2012.

    Google Scholar 

  17. Saito H, et al. Location of the glenoid defect in shoulders with recurrent anterior dislocation. Am J Sports Med. 2005;33(6):889–93.

    Article  PubMed  Google Scholar 

  18. Yamamoto N, et al. Effect of an anterior glenoid defect on anterior shoulder stability: a cadaveric study. Am J Sports Med. 2009;37(5):949–54.

    Article  PubMed  Google Scholar 

  19. Yamamoto N, et al. Stabilizing mechanism in bone-grafting of a large glenoid defect. J Bone Jt Surg Am. 2010;92(11):2059–66.

    Article  Google Scholar 

  20. Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill–Sachs lesion. Arthroscopy. 2000;16(7):677–94.

    Article  CAS  PubMed  Google Scholar 

  21. Lo IK, Parten PM, Burkhart SS. The inverted pear glenoid: an indicator of significant glenoid bone loss. Arthroscopy. 2004;20(2):169–74.

    Article  PubMed  Google Scholar 

  22. Itoi E. ‘On-track’ and ‘off-track’ shoulder lesions. EFORT Open Rev. 2017;2(8):343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shaha JS, et al. Redefining “critical” bone loss in shoulder instability: functional outcomes worsen with “subcritical” bone loss. Am J Sports Med. 2015;43(7):1719–25.

    Article  PubMed  Google Scholar 

  24. Yamamoto N, et al. Effect of subcritical glenoid bone loss on activities of daily living in patients with anterior shoulder instability. Orthop Traumatol Surg Res. 2019;105(8):1467–70.

    Article  PubMed  Google Scholar 

  25. Malgaigne JF. Traité des fractures et luxations/Atlas. Paris: JB Baillière; 1855.

    Google Scholar 

  26. Hill HA, Sachs MD. The grooved defect of the humeral head: a frequently unrecognized complication of dislocations of the shoulder joint. Radiology. 1940;35(6):690–700.

    Article  Google Scholar 

  27. Yamamoto N, et al. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elb Surg. 2007;16(5):649–56.

    Article  Google Scholar 

  28. Di Giacomo G, Itoi E, Burkhart SS. Evolving concept of bipolar bone loss and the Hill–Sachs lesion: from “engaging/non-engaging” lesion to “on-track/off-track” lesion. Arthroscopy. 2014;30(1):90–8.

    Article  PubMed  Google Scholar 

  29. Omori Y, et al. Measurement of the glenoid track in vivo as investigated by 3-dimensional motion analysis using open MRI. Am J Sports Med. 2014;42(6):1290–5.

    Article  PubMed  Google Scholar 

  30. Yamamoto N, et al. The relationship between the glenoid track and the range of shoulder motion: a cadaver study. Orthop Traumatol Surg Res. 2018;104(6):793–6.

    Article  CAS  PubMed  Google Scholar 

  31. Kawakami J, et al. In vivo glenoid track width can be better predicted with the use of shoulder horizontal extension angle. Am J Sports Med. 2019;47(4):922–7.

    Article  PubMed  Google Scholar 

  32. Yamamoto N, et al. Peripheral-track and central-track Hill–Sachs lesions: a new concept of assessing an on-track lesion. Am J Sports Med. 2020;48(1):33–8.

    Article  PubMed  Google Scholar 

  33. Itoi E. Opinion editorial—first-time shoulder dislocation: my approach. In: Matsen FA, et al., editors. Rockwood and Matsen’s the shoulder. 16th ed. Philadelphia: Elsevier; 2022. p. 635–8.

    Google Scholar 

  34. Kawakami J, et al. In which arm position is a Hill–Sachs lesion created? Am J Sports Med. 2019;47(10):2464–8.

    Article  PubMed  Google Scholar 

  35. Etoh T, et al. Mechanism and patterns of bone loss in patients with anterior shoulder dislocation. J Shoulder Elb Surg. 2020;29(10):1974–80.

    Article  Google Scholar 

  36. Hippocrates. On the articulations, the genuine works of Hippocrates. Clin Orthop Relat Res. 2002;400:19–25.

    Google Scholar 

  37. Rowe CR, Sakellarides HT. Factors related to recurrences of anterior dislocations of the shoulder. Clin Orthop. 1961;20:40–8.

    CAS  PubMed  Google Scholar 

  38. Wasserstein DN, et al. The true recurrence rate and factors predicting recurrent instability after nonsurgical management of traumatic primary anterior shoulder dislocation: a systematic review. Arthroscopy. 2016;32(12):2616–25.

    Article  PubMed  Google Scholar 

  39. Abe H, et al. Healing processes of the glenoid labral lesion in a rabbit model of shoulder dislocation. Tohoku J Exp Med. 2012;228(2):103–8.

    Article  PubMed  Google Scholar 

  40. Kuberakani K, et al. Comparison of best-fit circle versus contralateral comparison methods to quantify glenoid bone defect. J Shoulder Elb Surg. 2020;29(3):502–7.

    Article  Google Scholar 

  41. Itoi E. Chapter 27: The shoulder. In: Itoi E, Yoshikawa H, Tsumura H, Tanaka S, Takagi M, editors. Standard textbook series: Orthopedics. 14th ed. Tokyo: Igaku-Shoin; 2020. p. 426–50.

    Google Scholar 

  42. Walter WR, et al. Imaging quantification of glenoid bone loss in patients with glenohumeral instability: a systematic review. AJR Am J Roentgenol. 2019;212:1096–105.

    Article  PubMed  Google Scholar 

  43. Itoi E, et al. Position of immobilization after dislocation of the shoulder. A cadaveric study. J Bone Jt Surg Am. 1999;81(3):385–90.

    Article  CAS  Google Scholar 

  44. Itoi E, et al. Position of immobilization after dislocation of the glenohumeral joint. A study with use of magnetic resonance imaging. J Bone Jt Surg Am. 2001;83-a(5):661–7.

    Article  Google Scholar 

  45. Itoi E, et al. Is protecting the healing ligament beneficial after immobilization in external rotation for an initial shoulder dislocation? Am J Sports Med. 2013;41(5):1126–32.

    Article  PubMed  Google Scholar 

  46. Hatta T, et al. Comfort and acceptability of various immobilization positions using a shoulder external rotation and abduction brace. J Orthop Sci. 2017;22(2):285–8.

    Article  PubMed  Google Scholar 

  47. Hatta T, et al. Immobilizing performances, comfort, and user-friendliness of the shoulder abduction-external rotation braces. Ups J Med Sci. 2013;118(2):105–10.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shinagawa K, et al. Immobilization in external rotation reduces the risk of recurrence after primary anterior shoulder dislocation: a meta-analysis. Orthop J Sports Med. 2020;8(6):2325967120925694.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Itoi E, et al. Range of motion after Bankart repair. Vertical compared with horizontal capsulotomy. Am J Sports Med. 2001;29(4):441–5.

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto N, et al. Does the “bumper” created during Bankart repair contribute to shoulder stability? J Shoulder Elb Surg. 2013;22(6):828–34.

    Article  Google Scholar 

  51. Liu T, et al. Curved-guide system is useful in achieving optimized trajectory for the most inferior suture anchor during arthroscopic Bankart repair. J Shoulder Elb Surg. 2019;28(9):1692–8.

    Article  Google Scholar 

  52. Itoigawa Y, et al. Attachment of the anteroinferior glenohumeral ligament-labrum complex to the glenoid: an anatomic study. Arthroscopy. 2012;28(11):1628–33.

    Article  PubMed  Google Scholar 

  53. Nagaya LH, et al. Does glenoid remodeling occur with an erosion-type bone loss after arthroscopic Bankart repair? JSES Int. 2020;4(4):814–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yamamoto N, et al. Outcome of Bankart repair in contact versus non-contact athletes. Orthop Traumatol Surg Res. 2015;101(4):415–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hatta T, et al. Surgical decision making based on the on-track/off-track concept for anterior shoulder instability: a case-control study. JSES Open Access. 2019;3(1):25–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yamamoto N, et al. The stabilizing mechanism of the Latarjet procedure: a cadaveric study. J Bone Jt Surg Am. 2013;95(15):1390–7.

    Article  Google Scholar 

  57. Kronberg M, Nemeth G, Brostrom LA. Muscle activity and coordination in the normal shoulder. An electromyographic study. Clin Orthop Relat Res. 1990;257:76–85.

    Article  Google Scholar 

  58. Bassett RW, et al. Glenohumeral muscle force and moment mechanics in a position of shoulder instability. J Biomech. 1990;23(5):405–15.

    Article  CAS  PubMed  Google Scholar 

  59. Itoigawa Y, et al. Repairing the capsule to the transferred coracoid preserves external rotation in the modified Latarjet procedure. J Bone Jt Surg Am. 2016;98(17):1484–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Itoi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Itoi, E. (2023). Traumatic Dislocation. In: Shoulderology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0345-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0345-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0344-3

  • Online ISBN: 978-981-99-0345-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics