Skip to main content

A Critical Review on Finite Element Models Towards Physico-Mechanical Properties of Bamboo Fibre/Filler-Reinforced Composite Materials

  • Chapter
  • First Online:
Bamboo and Sustainable Construction

Abstract

Bamboo is nowadays considered one of the most promising alternative substitutes to synthetic fibre composites. In addition to being affordable, having a quick growth cycle, being easily accessible, environmentally benign, extremely flexible, simple to develop, and biodegradable characteristics, it also has higher strength and stiffness with low density. Their natural abundance, lower cost, lightweight, and strength-to-weight ratio characteristics have compelled us to consider bamboo-reinforced composites as the most sustainable and suitable composites for wide industrial applications. Researchers are deeply involved in investigating such natural fibre-reinforced composites (NFRCs) for the wider arena of industrial applications that have identified their reliability and accessibility for being involved in aircraft, automotive, and marine equipment as well as in various engineering disciplines. In this regard, various researchers have gone through modelling and simulation approaches in order to determine the performance characteristics of such bamboo-reinforced composites (BRCs). The present work is a noble attempt to illuminate the readers regarding the comprehensive review and summary of the finite element method (FEM) approach that has been carried out in terms of their modelling and simulation (M&S), model type, simulation parameters, and performing platforms, their research outcomes based on the applicable theories and popular methods in this area. The work is also expected to let more experts know about the current status of research in this area which would definitely prove to be a resourceful work for sustainable guidance for relevant researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhilash RM, Venkatesh GS, Chauhan SS (2021) Micromechanical modeling of bamboo short fibre reinforced polypropylene composites. Multiscale Multidiscip Model Exp Des 4(1):25–40. https://doi.org/10.1007/s41939-020-00081-3

    Article  Google Scholar 

  2. Kim HG, Kwac LK (2009) Evaluation of elastic modulus for unidirectionally aligned short fibre composites. J Mech Sci Technol 23(1):54–63. https://doi.org/10.1007/s12206-008-0810-1

    Article  Google Scholar 

  3. Ashwini K, Mohan Rao CV (2018) Design and analysis of leaf spring using various composites—an overview. Mater Today Proc 5(2):5716–5721. https://doi.org/10.1016/j.matpr.2017.12.166

  4. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44(1):120–127. https://doi.org/10.1016/j.compositesb.2012.07.004

    Article  CAS  Google Scholar 

  5. AL-Oqla FM, Sapuan SM (2014) Natural fibre reinforced polymer composites in industrial applications: feasibility of date palm fibres for sustainable automotive industry. J Clean Prod 66:347–354, Mar 2014. https://doi.org/10.1016/j.jclepro.2013.10.050

  6. Singh S, Deepak D, Aggarwal L, Gupta VK (2014) Tensile and flexural behavior of hemp fibre reinforced virgin-recycled HDPE matrix composites. Procedia Mater Sci 6:1696–1702. https://doi.org/10.1016/j.mspro.2014.07.155

    Article  CAS  Google Scholar 

  7. Sailesh A, Arunkumar R, Saravanan S (2018) Mechanical properties and wear properties of Kenaf—Aloe Vera—Jute fibre reinforced natural fibre composites. Mater Today Proc 5(2):7184–7190. https://doi.org/10.1016/j.matpr.2017.11.384

    Article  CAS  Google Scholar 

  8. Alves C et al (2010) Ecodesign of automotive components making use of natural jute fibre composites. J Clean Prod 18(4):313–327. https://doi.org/10.1016/j.jclepro.2009.10.02

    Article  CAS  Google Scholar 

  9. Naresh Kumar S, Venkatesh D, Subbaratnam B, Shekar M (2020) Mechanical testing and numerical analysis of flax/glass epoxy hybrid composite material. IOP Conf Ser Mater Sci Eng 998(1). https://doi.org/10.1088/1757-899X/998/1/012032

  10. Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J. Build. Eng. 9:91–99. https://doi.org/10.1016/j.jobe.2016.12.003

    Article  Google Scholar 

  11. Mallampati M, Raju BN, Krishna TM (2018) Evaluation of mechanical properties of rice straw fibre polypropylene composites. AIP Conf Proc 1980:10–14. https://doi.org/10.1063/1.5044282

  12. Madival AS, Doreswamy D, Handady SA, Hebbar KR, Lakshminarayana SK (2022) Investigation of the mechanical and liquid absorption properties of a rice straw-based composite for ayurvedic treatment tables. Materials (Basel) 15(2). https://doi.org/10.3390/ma15020606

  13. Safri SNA, Sultan MTH, Jawaid M, Jayakrishna K (2018) Impact behaviour of hybrid composites for structural applications: a review. Compos Part B Eng 133:112–121. https://doi.org/10.1016/j.compositesb.2017.09.008

    Article  CAS  Google Scholar 

  14. Vigneshwaran S et al (2020) Recent advancement in the natural fibre polymer composites: a comprehensive review. J Clean Prod 277:124109. https://doi.org/10.1016/j.jclepro.2020.124109

    Article  CAS  Google Scholar 

  15. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fibre reinforced polymer composites. Compos Part B Eng 42(4):856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  CAS  Google Scholar 

  16. Fan J, Grande CD, Rodrigues DF (2017) Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environ Sci Nano 4(9):1808–1816. https://doi.org/10.1039/C7EN00396J

    Article  CAS  Google Scholar 

  17. Alvarez-valencia D, Dagher HJ, Roberto A, Davids WG, Gardner DJ (2009) Behavior of natural-fibre/thermoplastic sheet piling, pp 1–16

    Google Scholar 

  18. El-Sabbagh A, Taha I, Taha R (2011) Prediction of the modulus of elasticity of short fibre reinforced polymer composites by finite element modelling. Polym Polym Compos 19(9):733–742. https://doi.org/10.1177/096739111101900903

    Article  CAS  Google Scholar 

  19. Xiong X, Shen SZ, Hua L, Li X, Wan X, Miao M (2018) Predicting tensile behaviors of short flax fibre-reinforced polymer–matrix composites using a modified shear-lag model. J Compos Mater 52(27):3701–3713. https://doi.org/10.1177/0021998318769128

    Article  CAS  Google Scholar 

  20. Jagath Narayana K, Burela RG (2019) Multi-scale modeling and simulation of natural fibre reinforced composites (Bio-composites). J Phys Conf Ser 1240(1). https://doi.org/10.1088/1742-6596/1240/1/012103

  21. Agarwal BD, Broutman LJ, Chandrashekhara K (1992) Analysis and performance of fibre composites (second edition). 151(1)

    Google Scholar 

  22. Chen XL, Liu YJ (2004) Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput Mater Sci 29(1):1–11. https://doi.org/10.1016/S0927-0256(03)00090-9

    Article  CAS  Google Scholar 

  23. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer (Guildf) 45(2):487–506. https://doi.org/10.1016/j.polymer.2003.10.100

    Article  CAS  Google Scholar 

  24. Schmachtenberg E, Brandt M (2006) Mechanical design of injection moulded parts made of short-fibre reinforced thermoplastics by means of integrative simulation. J Polym Eng 26(2–4), May 2006. https://doi.org/10.1515/POLYENG.2006.26.2-4.179

  25. Facca AG, Kortschot MT, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos Part A Appl Sci Manuf 37(10):1660–1671. https://doi.org/10.1016/j.compositesa.2005.10.006

    Article  CAS  Google Scholar 

  26. Haghighat M, Zadhoush A, Khorasani SN (2005) Physicomechanical properties of α-cellulose-filled styrene-butadiene rubber composites. J Appl Polym Sci 96(6):2203–2211. https://doi.org/10.1002/app.21691

    Article  CAS  Google Scholar 

  27. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352. https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  28. Tucker CL III, Liang E (1999) Stiffness predictions for unidirectional short-fibre composites: review and evaluation. Compos Sci Technol 59(5):655–671. https://doi.org/10.1016/S0266-3538(98)00120-1

    Article  Google Scholar 

  29. Budarapu PR, Zhuang X, Rabczuk T, Bordas SPA (2019) Multiscale modeling of material failure: theory and computational methods, 1st ed, vol 52. Elsevier Inc

    Google Scholar 

  30. Zhong B, Li C, Li P (2020) Modeling and vibration analysis of sectional-laminated cylindrical thin shells with arbitrary boundary conditions. Appl Acoust 162:107184. https://doi.org/10.1016/j.apacoust.2019.107184

    Article  Google Scholar 

  31. Liu T, Wang A, Wang Q, Qin B (2020) Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions. Thin-Walled Struct 148:106580. https://doi.org/10.1016/j.tws.2019.106580

    Article  Google Scholar 

  32. Gao W, Qin Z, Chu F (2020) Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp Sci Technol 102:105860. https://doi.org/10.1016/j.ast.2020.105860

    Article  Google Scholar 

  33. Li C, Li P, Zhong B, Wen B (2019) Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions. Nonlinear Dyn 95(3):1903–1921. https://doi.org/10.1007/s11071-018-4667-2

    Article  Google Scholar 

  34. Rahman MZ (2017) Mechanical performance of natural fibre reinforced hybrid composite materials using finite element method based micromechanmincs and experiments. J Chem Inf Model 53(9):1689–1699

    Google Scholar 

  35. Yu W (2016) An introduction to micromechanics. Appl Mech Mater 828:3–24. https://doi.org/10.4028/www.scientific.net/AMM.828.3

    Article  Google Scholar 

  36. Poudel A (2019) Finite element method: introduction and steps of finite element analysis. https://geniuserc.com/finite-element-method-introduction-and-steps-of-finite-element-analysis/. Accessed on 25 Oct 2022

  37. Abu Seman SAH, Ahmad R, Md Akil H (2019) Experimental and numerical investigations of kenaf natural fibre reinforced composite subjected to impact loading. Polym Compos 40(3):909–915, Mar 2019. https://doi.org/10.1002/pc.24758

  38. Bazli M, Ashrafi H, Jafari A, Zhao XL, Raman RS, Bai Y (2019) Effect of fibres configuration and thickness on tensile behavior of gfrp laminates exposed to harsh environment. Polymers (Basel) 11(9):1401, Aug 2019. https://doi.org/10.3390/polym11091401

  39. Chen Y, Xin L, Liu Y, Guo Z, Dong L, Zhong Z (2019) A viscoelastic model for particle-reinforced composites in finite deformations. Appl Math Model 72:499–512. https://doi.org/10.1016/j.apm.2019.03.033

    Article  Google Scholar 

  40. Dong C (2019) Mechanical properties of natural fibre-reinforced hybrid composites. J Reinf Plast Compos 38(19–20):910–922. https://doi.org/10.1177/0731684419856686

    Article  CAS  Google Scholar 

  41. Hu D, Dang L, Zhang C, Zhang Z (2019) Mechanical behaviors of flax fibre-reinforced composites at different strain rates and rate-dependent constitutive model. Materials (Basel) 12(6):854. https://doi.org/10.3390/ma12060854

    Article  CAS  Google Scholar 

  42. Alioua T, Agoudjil B, Boudenne A (2019) Numerical modelling and experimental study of heat and moisture properties of a wall based on date palm fibres concrete. E3S Web Conf 85:02009, Feb 2019. https://doi.org/10.1051/e3sconf/20198502009

  43. Su J, Zheng L, Deng Z (2019) Study on acoustic properties at normal incidence of three-multilayer composite made of glass wool, glue and polyurethane foam. Appl Acoust 156:319–326. https://doi.org/10.1016/j.apacoust.2019.07.016

    Article  Google Scholar 

  44. Qin J-L, Qiao W-G, Lin D-G, Zhang S, Wang J-Y (2019) Mechanical properties and numerical analyses of basalt fibre crumb rubber mortars in soft rock roadways. Adv Civ Eng 2019:1–13. https://doi.org/10.1155/2019/5159094

    Article  Google Scholar 

  45. Ma P, Jin L, Wu L (2019) Experimental and numerical comparisons of ballistic impact behaviors between 3D angle-interlock woven fabric and its reinforced composite. J Ind Text 48(6):1044–1058. https://doi.org/10.1177/1528083718754903

    Article  Google Scholar 

  46. Sun X et al (2019) Fracture performance and numerical simulation of basalt fibre concrete using three-point bending test on notched beam. Constr Build Mater 225:788–800. https://doi.org/10.1016/j.conbuildmat.2019.07.244

    Article  Google Scholar 

  47. Meyghani B, Awang MB, Emamian SS, Mohd Nor MKB, Pedapati SR (2017) A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW). Metals (Basel) 7(10):1–23. https://doi.org/10.3390/met7100450

  48. Frącz W, Janowski G (2019) Predicting effect of fibre orientation on chosen strength properties of wood-polymer composites. Compos Theory Pract 19(2):56–63

    Google Scholar 

  49. Jiang W-G, Zhong R-Z, Qin Q, Tong Y-G (2014) Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces. Int J Mol Sci 15(12):23389–23407. https://doi.org/10.3390/ijms151223389

    Article  CAS  Google Scholar 

  50. Adeniyi AG, Adeoye AS, Ighalo JO, Onifade DV (2021) FEA of effective elastic properties of banana fibre-reinforced polystyrene composite. Mech Adv Mater Struct 28(18):1869–1877. https://doi.org/10.1080/15376494.2020.1712628

    Article  CAS  Google Scholar 

  51. Fragassa C (2016) Effect of natural fibres and bio-resins on mechanical properties in hybrid and non-hybrid composites, p 020118. https://doi.org/10.1063/1.4949693

  52. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fibre reinforced plastic composites. Polym Eng Sci 41(9):1471–1485. https://doi.org/10.1002/pen.10846

    Article  CAS  Google Scholar 

  53. dos Santos D, Tavares LB, Batalha G (2012) Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. J Achieve Mater Manuf Eng 54(2):211–217

    Google Scholar 

  54. Vogtländer J, van der Lugt P, Brezet H (2010) The sustainability of bamboo products for local and Western European applications. LCAs and land-use. J Clean Prod 18(13):1260–1269. https://doi.org/10.1016/j.jclepro.2010.04.015

    Article  CAS  Google Scholar 

  55. Asif M (2009) Sustainability of timber, wood and bamboo in construction. In: Sustainability of construction materials, Elsevier, pp 31–54

    Google Scholar 

  56. Manandhar R, Kim J-H, Kim J-T (2019) Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J Asian Archit Build Eng 18(2):49–59. https://doi.org/10.1080/13467581.2019.1595629

    Article  Google Scholar 

  57. Sharma B, Gatóo A, Bock M, Ramage M (2015) Engineered bamboo for structural applications. Constr Build Mater 81:66–73. https://doi.org/10.1016/j.conbuildmat.2015.01.077

    Article  Google Scholar 

  58. Huang Z, Sun Y, Musso F (2017) Assessment of bamboo application in building envelope by comparison with reference timber. Constr Build Mater 156:844–860. https://doi.org/10.1016/j.conbuildmat.2017.09.026

    Article  Google Scholar 

  59. Richardson C, Mofidi A. Non-linear numerical modelling of sustainable advanced composite columns made from bamboo culms, pp 169–187, 202

    Google Scholar 

  60. Bansal AK, Zoolagud SS (2002) Bamboo composites: material of the future. 1(2):119–130

    Google Scholar 

  61. Chand N, Shukla M, Kumar M (2014) Analysis of mechanical behaviour of bamboo (Dendrocalamus strictus) by using FEM. Nov 2014, pp 37–41. https://doi.org/10.1080/15440470801928970

  62. Li L (2012) Tensile properties of regenerated bamboo yarn. 1(90):20–22

    Google Scholar 

  63. Li Z, Zhang J, Xiao D, Xiao Y (2020) Estimation on tensile elastic properties of engineered bamboo boards with image information. In: The 2020 world congress on the 2020 structures congress (Structures 20), pp 25–28

    Google Scholar 

  64. Eskezia E, Abera A, Tilahun D (2017) Finite element analysis of internal door panel of a car by considering bamboo fibre reinforced epoxy composite. J Appl Mech Eng 6(1):1–6. https://doi.org/10.4172/2168-9873.1000247

  65. Mat Kasim FA, Roslan SAH, Rasid ZA, Yakub F, Hassan MZ, Yahaya H (2021) Post-buckling of bamboo reinforced composite plates. IOP Conf Ser Mater Sci Eng 1051(1):012040. https://doi.org/10.1088/1757-899X/1051/1/012040

  66. Askarinejad S, Kotowski P, Shalchy F, Rahbar N (2015) Effects of humidity on shear behavior of bamboo. Theor Appl Mech Lett 5(6):236–243. https://doi.org/10.1016/j.taml.2015.11.007

    Article  Google Scholar 

  67. Sen T, Reddy HNJ (2011) A numerical study of strengthening of RCC beam using natural bamboo fibre. 3(5):707–713

    Google Scholar 

  68. Jena H (2017) Effect of cenosphere on thermal conductivity of bamboo fibre reinforced composites. Adv Mater Proc 2(2):97–102. https://doi.org/10.5185/amp.2017/207

    Article  Google Scholar 

  69. Chandana E, Altaf Hussian D (2013) Thermal conductivity characterization of bamboo fibre reinforced in epoxy resin. IOSR J Mech Civ Eng 9(6):7–14

    Google Scholar 

  70. Alhijazi M, Zeeshan Q, Qin Z, Safaei B, Asmael M (2020) Finite element analysis of natural fibres composites: a review. Nanotechnol Rev 9(1):853–875. https://doi.org/10.1515/ntrev-2020-0069

    Article  Google Scholar 

  71. Shinde SS, Salve AV, Kulkarni S (2017) Theoretical modeling of mechanical properties of woven jutefiber reinforced polyurethanecomposites. Mater Today Proc 4(2):1683–1690. https://doi.org/10.1016/j.matpr.2017.02.008

    Article  Google Scholar 

  72. Rajkumar DR, Santhy K, Padmanaban KP (2021) Influence of mechanical properties on modal analysis of natural fiber reinforced laminated composite trapezoidal plates. J Nat Fibers 18(12):2139–2155. https://doi.org/10.1080/15440478.2020.1724230

    Article  CAS  Google Scholar 

  73. José da Silva L, Hallak Panzera T, Luis Christoforo A, Miguel Pereira Dur L, Antonio Rocco Lahr F (2012) Numerical and experimental analyses of biocomposites reinforced with natural fibres. Int J Mater Eng 2(4):43–49. https://doi.org/10.5923/j.ijme.20120204.03

  74. Joffre T, Miettinen A, Wernersson ELG, Isaksson P, Gamstedt EK (2014) Effects of defects on the tensile strength of short-fibre composite materials. Mech Mater 75:125–134. https://doi.org/10.1016/j.mechmat.2014.04.003

    Article  Google Scholar 

  75. Eagala RY, Gopichand A, Raghavendra G, Ali S (2012) Abrasive wear behaviour of bamboo-glass fibre reinforced epoxy composites using Taguchi approach. Int J Adv Eng Technol 5(1):2231–1963

    Google Scholar 

  76. Prabhu R, Mendonca S, D’Souza R, Vas JP, Bhat T (2019) Application of Taguchi techniques to study the effect of alkaline treatment and fibre length on mechanical properties of short bamboo fibre reinforced epoxy composites. AIP Conf Proc 2080. https://doi.org/10.1063/1.5092902

  77. Davoodi MM, Sapuan SM, Ahmad D, Aidy A, Khalina A, Jonoobi M (2011) Concept selection of car bumper beam with developed hybrid bio-composite material. Mater Des 32(10):4857–4865. https://doi.org/10.1016/j.matdes.2011.06.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Mishra, S.K., Kumar, K. (2023). A Critical Review on Finite Element Models Towards Physico-Mechanical Properties of Bamboo Fibre/Filler-Reinforced Composite Materials. In: Palombini, F.L., Nogueira, F.M. (eds) Bamboo and Sustainable Construction. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-99-0232-3_9

Download citation

Publish with us

Policies and ethics