Skip to main content

International Environmental Standards for the Regulation of Freshwater Cyanobacterial Blooms and Their Biotoxins

  • Chapter
  • First Online:
Cyanobacterial Biotechnology in the 21st Century

Abstract

Among the harmful algal blooms (HABs), cyanobacterial blooms (CyanoHABs) are one of the most studied and well known, as they constitute a worldwide environmental problem, with serious repercussions on human and animal health. Cyanobacteria can produce a wide variety of substances with different biological activities, many identified as potent toxins. Thus, the need to control and create regulations on this issue is crucial to ensure human health. In this article we provide a short and condensed general review of toxin concentration levels and exposure scenarios which are included in the legislation, standards, and guidelines that are in effect in different countries. Most national regulations are aimed to ensure the safety of potable water supply, and, as far as cyanotoxins are concerned, they usually include the minimum concentrations above which a health hazard is presumed. However, a very limited spectrum of toxins is considered. In addition, the global picture shows clear regional inequalities in terms of indicator variables, action levels, and existing knowledge about the affected ecosystems, the distribution of cyanobacteria, and their toxins. A general drawback lies in the fact that the regulations do not usually recommend specific measurement analytics, which hampers the intercalibration and application of standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker TC, Tymm FJ, Murch SJ (2018) Assessing environmental exposure to β-N-methylamino-l-alanine (BMAA) in complex sample matrices: a comparison of the three most popular LC-MS/MS methods. Neurotox Res 33(1):43–54

    Article  CAS  PubMed  Google Scholar 

  • Bláha L, Babica P, Maršálek B (2009) Toxins produced in cyanobacterial water blooms – toxicity and risks interdisciplinary. Toxicology 2(2):36–41

    Google Scholar 

  • Burch MD (2008) Effective doses, guidelines & regulations. Adv Exp Med Biol 619:831–853

    Article  CAS  PubMed  Google Scholar 

  • Chorus I (2005) Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. 117 pp, Federal Environment Agency (Unweltbundesamt), Berlin

    Google Scholar 

  • Chorus I (2012) Introduction. In: Chorus I (ed) Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. 147 pp. Section II drinking water and swimming pool water hygiene. Federal Environment Agency (Unweltbundesamt), Berlin

    Google Scholar 

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. World Health Organization, London, p 416

    Google Scholar 

  • Chorus I, Welker M (2021) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Taylor & Francis, 858 pp

    Google Scholar 

  • Chorus I, Welker M (2021) A guide to their public health consequences, monitoring and management. In: Chorus I, Welker M (eds) CRC Press, London, 8587 pp

    Google Scholar 

  • Chorus I, Falconer IR, Salas HJ, Bartram J (2000) Health risks caused by freshwater cyanobacteria in recreational waters. J Toxicol Environ Health, Part B 3:323–347

    Article  CAS  Google Scholar 

  • Cobo F (2015) Métodos de control de las floraciones de cianobacterias en aguas continentales. Limnetica 34(1):247–268

    Google Scholar 

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol Eng 16:51–60

    Article  Google Scholar 

  • Codd GA, Bell SG, Brooks WP (1989) Cyanobacterial toxins in water. Water Sci Technol 21(3):1–13

    Article  CAS  Google Scholar 

  • Codd GA, Lindsay J, Young FM, Morrison LF, Metcalf JS (2005) Harmful cyanobacteria: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  CAS  PubMed  Google Scholar 

  • Cottingham KL, Weathers KC, Ewing HA, Greer ML, Carey CC (2021) Predicting the effects of climate change on freshwater cyanobacterial blooms requires consideration of the complete cyanobacterial life cycle. J Plankton Res 43(1):10–19

    Article  CAS  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102(1):5074–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson RM (1998) Review article: the toxicology of microcystins. Toxicon 36(7):953–962

    Article  CAS  PubMed  Google Scholar 

  • Dietrich D, Hoeger S (2005) Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharmacol 203:273–289

    Article  CAS  PubMed  Google Scholar 

  • Douma M, Ouahid Y, del Campo FF, Loudiki M, Mouhri KH, Oudra B (2010) Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi Almassira). Environ Monit Assess 160:439–450

    Article  CAS  PubMed  Google Scholar 

  • Dunn J (1996) Algae kills dialysis patients in Brazil. Br Med J 312:1183–1184

    Article  CAS  Google Scholar 

  • Falconer IR (1996) Potential impact on human health of toxic cyanobacteria. Phycologia 35(Suppl 6):6–11

    Article  Google Scholar 

  • Falconer I, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M, Codd GA (1999) Safe levels and safe practices. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. E & FN Spon, London

    Google Scholar 

  • Farrer D, Counter M, Hillwig R, Cude C (2015) Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Toxins 7(2):457–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald D, Cunliffe D, Burch M (1999) Development of health alerts for cyanobacteria and related toxins in drinking water in South Australia. Environ Toxicol 14(1):203–207

    Article  CAS  Google Scholar 

  • Francis G (1878) Poisonous Australian lake. Nature 18:11–12

    Article  Google Scholar 

  • Giddings M, Aranda-Rodriguez R, Yasvinski G, Watson SB, Zurawell R (2012) Canada: cyanobacterial toxins: drinking and recreational water quality guidelines. In: Chorus I (ed) Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. 147 pp. Section II drinking water and swimming pool water hygiene. Federal Environment Agency (Unweltbundesamt), Berlin

    Google Scholar 

  • Gkelis S, Papadimitriou T, Zaoutsos N, Leonardos I (2014) Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae 39:322–333

    Article  CAS  Google Scholar 

  • Graham JL (2021) Cyanotoxin occurrence in the United States: a 20 year retrospective. Lakeline 41:8–11

    Google Scholar 

  • Grupta S (1998) Cyanobacterial toxins: microcystin-LR. Health criteria and other supporting information. In: Organización Mundial de la Salud (OMS) (ed) Guidelines for drinking-water quality. Génova, pp 95–110

    Google Scholar 

  • Hotto AM, Satchwell MF, Boyer GL (2007) Molecular characterization of potential microcystin-producing cyanobacteria in Lake Ontario embayments and nearshore waters. Appl Environ Microbiol 73(14):4570–4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudnell HK (2010) The state of US freshwater harmful algal blooms assessments, policy and legislation. Toxicon 55(5):1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Hudnell HK, Backer LC, Andersen J, Dionysiou DD (2012) United States of America: historical review and current policy addressing cyanobacteria. In: Chorus I (ed) Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. 147 pp. section II drinking water and swimming Pool water hygiene, Federal Environment Agency (Unweltbundesamt), Berlin

    Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JM, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16(8):471–483

    Article  CAS  PubMed  Google Scholar 

  • Humpage A (2008) Toxin types, toxicokinetics and toxicodynamics. In: Hudnell HK (eds) Cyanobacterial harmful algal blooms: state of the science and research needs. Advances in experimental medicine and biology, vol 619. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75865-7_16

  • Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18:94–103

    Article  CAS  PubMed  Google Scholar 

  • Ibelings BW, Backer LC, Kardinaal WEA, Chorus I (2014) Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 40:63–74

    Article  CAS  Google Scholar 

  • IPCS (1995) Inorganic lead. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria) 165

    Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Olesen JE et al (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38(5):1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Kapsalis VC, Kalavrouziotis IK (2021) Eutrophication—a worldwide water quality issue. In: Zamparas MG, Kirapoulus GL (eds) Chemical Lake restoration. Technologies, innovation and economic perspective. Springer, Cham, pp 1–21

    Google Scholar 

  • Llewellyn LE (2009) Sodium channel inhibiting marine toxins. In: Fusetani N, Kem W (eds) Marine toxins as research tools, vol 46. Springer, Berlin, pp 67–97

    Chapter  Google Scholar 

  • Mankiewicz-Boczek J, Jurczak T, Izydorczyk K, Zalewski M (2005) Poland: regulation on cyanotoxins in legislation. Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. WaBoLu-Hefte 99–101

    Google Scholar 

  • Mazur-Marzec H (2006) Characterization of phycotoxins produced by cyanobacteria. Oceanol Hydrobiol Stud 35(1):85–109

    CAS  Google Scholar 

  • Mcbarron EJ, May V (1966) Poisoning of sheep in new south wales by the blue-green alga anacystis cyanea (kuetz.) Dr. and Dail. Aust Vet J 42:449–453

    Article  CAS  PubMed  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    Article  CAS  PubMed  Google Scholar 

  • Metcalf JS, Codd GA (2009) Chapter 8. The status and potential of cyanobacteria and their toxins as agents of bioterrorism. In: Gault PM, Marler HJ (eds) Handbook on cyanobacteria: biochemistry, biotechnology and applications. Nova Publishers, New York, pp 259–281

    Google Scholar 

  • Metcalf JS, Codd GA (2012) Chapter 24. Cyanotoxins. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer Science + Busisness Media B.V, pp 651–675

    Chapter  Google Scholar 

  • Moe SJ, Haande S, Couture RM (2016) Climate change, cyanobacteria blooms and ecological status of lakes: a Bayesian network approach. Ecol Model 337:330–347

    Article  CAS  Google Scholar 

  • Molica R, Azevedo S (2009) Ecofisiologia de cianobacterias productoras de cianotoxinas. Oecologia brasiliensis 13(2):229–246

    Google Scholar 

  • Niamien-Ebrottie JE, Bhattacharyya S, Deep PR, Nayak B (2015) Cyanobacteria and cyanotoxins in the world: review. Int J Appl Res 1(8):563–569

    Google Scholar 

  • WHO (World Health Organization) (2003) Guidelines for safe recreational water environments, vol 1: Coastal and fresh waters, Geneva

    Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43(7):1604–1614

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiologu Rep 1(1):27–37

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65(4):995–1010

    Article  CAS  PubMed  Google Scholar 

  • Pérez DS, Soraci AL, Tapia MO (2008) Cianobacterias y cianotoxinas: rol de las microcistinas en la salud humana y animal y su detección en las muestras de agua. Analecta Veterinaria 28(1):48–56

    Google Scholar 

  • Plaas HE, Paerl HW (2020) Toxic cyanobacteria: a growing threat to water and air quality. Environ Sci Technol 55(1):44–64

    Article  PubMed  Google Scholar 

  • Quesada A, Moreno E, Carrasco D, Paniagua T, Wörmer L, de Hoyos C, Sukenik A (2006) Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. Eur J Phycol 41(1):39–45

    Article  CAS  Google Scholar 

  • Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46:277–283

    Article  Google Scholar 

  • Roset J, Aguayo S, Muñoz MJ (2001) Detección de cianobacterias y sus toxinas. Una revisión Toxicología 18:65–71

    CAS  Google Scholar 

  • Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J (2019) Recent trends in determination of neurotoxins in aquatic environmental samples. TrAC Trends Anal Chem 112:112–122

    Article  CAS  Google Scholar 

  • Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biotechnol 30:383–406

    Article  CAS  PubMed  Google Scholar 

  • Sha J, Xiong H, Chengjun LI, Zhiying LU, Zhang J, Zhong H, Zhang W, Yan B (2021) Harmful algal blooms and their eco-environmental indication. Chemosphere 129912

    Google Scholar 

  • Shaw G, Seawright A, Shahin M, Senogles P, Mueller J, Moore M (2000) The cyanobacterial toxin, cylindrospermopsin: human health risk assessment. In: Harmful algal blooms. 9th international conference on harmful algal blooms. Hobart. 56. National Research. Center for Environmental Toxicology, Australia

    Google Scholar 

  • Spencer PS, Palmer VS, Kisby GE (2016) Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 56:269–283

    Article  PubMed  Google Scholar 

  • Svirčev Z, Lalić D, Savić GB, Tokodi N, Backović DD, Chen L, Meriluoto J, Codd GA (2019) Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 93(9):2429–2481

    Article  PubMed  Google Scholar 

  • van Appeldoorn ME, van Egmond HP, Speijers GJ, Bakker GJ (2007) Review. Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60

    Article  Google Scholar 

  • Vergara Larrrayad Y, Moya Jaraba A, Peleato Sánchez ML, Sevilla Miguel E, S. López gomollón. (2005) Nuevos riesgos para el agua potable: microcistina. Mejora de la calidad del agua de consumo por eliminación de toxinas. Consejo económico y social de Aragón, Spain 16

    Google Scholar 

  • Wang Z, Akbar S, Sun Y, Gu L, Zhang L, Lyu K, Huang Y, Yang Z (2021) Cyanobacterial dominance and succession: factors, mechanisms, predictions, and managements. J Environ Manag 297:113281

    Article  CAS  Google Scholar 

  • Wood S, Williamson W, Kouzminov A (2012) New Zealand: regulation and management of cyanobacteria. In: Chorus I (ed) Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries. 147 pp. Section II drinking water and swimming pool water hygiene. Federal Environment Agency (Unweltbundesamt), Berlin

    Google Scholar 

  • Xia R, Zhang Y, Critto A, Wu J, Fan J, Zheng Z, Zang Y (2016) The potential impacts of climate change factors on freshwater eutrophication: implications for research and countermeasures of water management in China. Sustainability 8:229

    Article  Google Scholar 

  • Yadav S, Sinha RP, Tyagi MB, Kumar A (2011) Cyanobacterial secondary metabolites. Int J Farma Bio Sci 2(2):B144–B167

    Google Scholar 

  • Yu SZ (1995) Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 10:674–682

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Cobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cobo, F., Barca, S., Vieira-Lanero, R., Cobo, M.C. (2023). International Environmental Standards for the Regulation of Freshwater Cyanobacterial Blooms and Their Biotoxins. In: Neilan, B., Passarini, M.R.Z., Singh, P.K., Kumar, A. (eds) Cyanobacterial Biotechnology in the 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-99-0181-4_12

Download citation

Publish with us

Policies and ethics