Skip to main content

Factors Affecting the Habitat Suitability of Eastern Swamp Deer (Rucervus duvaucelii ranjitsinhi Groves, 1982) in Manas National Park and Implication for Terai Grassland Restoration

  • Chapter
  • First Online:
Ecosystem and Species Habitat Modeling for Conservation and Restoration

Abstract

Conservation management to aid in the recovery of threatened species requires an understanding of their habitat availability and preference. Species distribution modelling can help delineate critical habitats to frame conservation decisions, particularly for a habitat-specialist species. Swamp deer is a grassland-obligate species, with three subspecies identified based on physical and geographic variations. Of these, the eastern swamp deer has restricted distribution and occurs only in two protected areas in the Brahmaputra valley of Assam, India. With assisted conservation efforts, the swamp deer population has revived in Manas National Park from an erstwhile heavily reduced remnant population. Through this paper an attempt has been made to analyse the patterns of swamp deer occurrence as determined by habitat variables using random forest algorithm models. The results indicate that the optimal habitats of swamp deer are the large grassland patches with wet climatic conditions, measured by the precipitation and evapotranspiration, within the broad grassland habitat of the park. The findings have significant implications for the conservation of the threatened grassland habitat and its obligate species in the Terai grasslands of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed K, Khan JA (2008) Status, population structure and conservation of swamp deer (Cervus duvaucelii duvaucelii) in Dudhwa Tiger Reserve, Uttar Pradesh, India. Int J Ecol Environ Sci 34(2):75–82

    Google Scholar 

  • Ahmed A, Barman R, Choudhury B, Sarma R, Ashraf NVK, Kaul R, Menon V (2016) Supplementation of eastern swamp deer in Manas National Park, Assam, India. In: Soorae PS (ed) Global re-introduction perspectives: case-studies from around the globe. IUCN/SSC Reintroduction Specialist Group and Abu Dhabi, UAE, Environment Agency, Gland, Switzerland and Abu Dhabi, pp 178–181

    Google Scholar 

  • Ahrestani FS, Heitkonig IMA, van Langevelde F, Vaidyanathan S, Madhusudan MD, Prins HHT (2011) Moisture and nutrients determine the distribution and richness of India’s large herbivore species assemblage. Basic Appl Ecol 12(7):634–642. https://doi.org/10.1016/j.baae.2011.08.008

    Article  Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 34(2):201–212. https://doi.org/10.1111/j.1365-2699.2006.01584.x

    Article  Google Scholar 

  • Araujo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96:331–345. https://doi.org/10.1016/S0006-3207(00)00074-4

    Article  Google Scholar 

  • Aubry KB, Raley CM, McKelvey KS (2017) The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species. PLoS One 12(6):e0179152. https://doi.org/10.1371/journal.pone.0179152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerkircher L, Arocha F, Barse A, Prince E, Restrepo V, Serafy J, Shivji M (2009) Effects of species misidentification on population assessment of overfished white marlin tetrapturus albidus and roundscale spearfish T. georgii. Endanger Species Res 9(2):81–90. https://doi.org/10.3354/esr00234

    Article  Google Scholar 

  • Biau G (2012) Analysis of a random forests model. J Mach Learn Res 13(1):1063–1095

    Google Scholar 

  • Borah J, Sharma T, Azad K et al (2013) Photographic evidence of the swamp deer in Manas. Oryx 47(4):481. https://doi.org/10.1017/S0030605313001063

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brotons L, Thuiller W, Araujo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27(4):437–448

    Article  Google Scholar 

  • Brown JL, Bennett JR, French CM (2017) SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peer J 5:e4095. https://doi.org/10.7717/peerj.4095

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci U S A 114:6089–6096. https://doi.org/10.1073/pnas.1704949114

    Article  CAS  Google Scholar 

  • Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003) SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrac N, Gamberger D, Todorovski L, Blockeel H (eds) 7th European conference on principles and practice of knowledge discovery in databases. Knowledge discovery in databases: PKDD 2003. Lecture Notes in Computer Science, 2838. Springer, Heidelberg, pp 107–119. https://doi.org/10.1007/978-3-540-39804-2_12

    Chapter  Google Scholar 

  • Chen C, Liaw A, Breiman L (2004) Using random forest to learn imbalanced data. University of California, Berkeley, p 24. http://oz.berkeley.edu/users/chenchao/666.pdf

    Google Scholar 

  • Choudhury A (1997) Checklist of the mammals of Assam. Gibbon Books with ASTEC, Guwahati

    Google Scholar 

  • Connor T, Hull V, Vina A, Shortridge A, Tang Y, Zhang J, Wang F, Liu J (2018) Effects of grain size and niche breadth on species distribution modeling. Ecography 41:1270–1282. https://doi.org/10.1111/ecog.03416

    Article  Google Scholar 

  • Cuvier G (1823) Recherches sur les ossemens fossiles (Vol. 5, No. 1). chez G. Dufour et E. d'Ocagne

    Google Scholar 

  • Danell K, Bergstrom R, Duncan P et al (eds) (2006) Large herbivore ecology, ecosystem dynamics & conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Dar SA, Singh SK, Wan HY, Kumar V, Cushman SA, Sathyakumar S (2021) Projected climate change threatens Himalayan brown bear habitat more than human land use. Anim Conserv 24(4):659–676. https://doi.org/10.1111/acv.12671

    Article  Google Scholar 

  • Das JP, Sinha A, Talukdar BK (2009) Swamp deer in Manas: present status and feasibility of restocking. Preliminary report submitted to Manas Project Tiger Directorate, Assam Forest Department, p 14. htps://www.ruford.org

    Google Scholar 

  • Das D, Banerjee S, Lehmkuhl J, Krishnaswamy J, John R (2022) The influence of abiotic and spatial variables on woody and herbaceous species abundances in a woodland–grassland system in the Eastern Terai of India. J Plant Ecol 15(1):155–167

    Article  Google Scholar 

  • Duckworth JW, Kumar NS, Pokharel CP et al (2015) Rucervus duvaucelii. The IUCN Red List of Threatened Species e.T4257A22167675. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T4257A22167675.en

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landsc Ecol 24(5):673–683. https://doi.org/10.1007/s10980-009-9341-0

    Article  Google Scholar 

  • Evans JS, Murphy MA (2018) rfUtilities. R package version. 2.1–3. https://cran.rproject.org/package=rfUtilities

  • Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modelling spatial pattern in biodiversity: the North-East New South Wales experience. I. Species-level modelling. Biodivers Conserv 11:2275–2307

    Article  Google Scholar 

  • Ghosh S, Mathur VB (2020) The deer that rode a car: role of CSR in Natural Resource Conservation Corporate Biodiversity Management for Sustainable Growth, p 59. ISBN:978-3-030-42702-3

    Google Scholar 

  • Ghosh S, Lahkar BP, Deuti K, Nath A, Banerji-Bhattacharya G, Brahma N, Das JP, Sinha A, Lahkar D, Barukial B, Charles LP, Adhikari AS (2014) Survey for endangered Grassland Species in Manas National Park. Survey Report submitted to Field Directorate Tiger Project, Manas. Govt of Assam, p 21

    Google Scholar 

  • Gopal R (1992) Resurrection of the Branderi Barasingha, Cheetal. J Wildl Preserv Soc India 31(1 & 2):1–5

    Google Scholar 

  • Goswami R, Ganesh T (2014) Carnivore and herbivore densities in the immediate aftermath of ethno-political conflict: the case of Manas National Park, India. Trop Conserv Sci 7:475–487. https://doi.org/10.1177/194008291400700308

    Article  Google Scholar 

  • Graham AJ, Atkinson PM, Danson FM (2004) Spatial analysis for epidemiology. Acta Trop 91(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Groves CP (1982) Geographic variation in the Barasingha or swamp deer. J Bombay Nat Hist Soc 79:620–629. https://www.biodiversitylibrary.org/page/48745060

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314

    Google Scholar 

  • Islam N, Ahmed A, Barman R et al (2022) Revival of Eastern Swamp Deer Rucervus duvaucelii ranjitsinhi (Groves, 1982) in Manas National Park of Assam, India. J Threat Taxa 14(1):20488–20493

    Article  Google Scholar 

  • Jathanna D, Karanth KU, Johnsingh AJT (2003) Estimation of large herbivore densities in the tropical forests of southern India using distance sampling. J Zool 261(3):285–290

    Article  Google Scholar 

  • Johnsingh AJT, Ramesh K, Qureshi Q, David A, Goyal SP, Rawat GS, Rajapandian K, Prasad S (2004) Conservation status of tiger and associated species in the Terai Arc Landscape. Wildlife Institute of India, Dheradun, pp viii+-110

    Google Scholar 

  • Karanth KK, Nichols JD, Karanth KU, Hines JE, Christensen NL Jr (2010) The shrinking ark: patterns of large mammal extinctions in India. Proc R Soc B 277:1971–1979. https://doi.org/10.1098/rspb.2010.0171

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahan P, Sonowal R (1973) Kaziranga wildlife sanctuary, Assam. J Bombay Nat Hist Soc 70(2):245–278

    Google Scholar 

  • Lahkar D, Ahmed F, Begum RH et al (2020) Inferring patterns of sympatry among large carnivores in Manas National Park—a prey-rich habitat influenced by anthropogenic disturbances. Anim Conserv 24(4):589–601. https://doi.org/10.1111/acv.12662

    Article  Google Scholar 

  • Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374. https://doi.org/10.2307/2529786

    Article  CAS  PubMed  Google Scholar 

  • Lehmkuhl JF (1994) A classification of subtropical riverine grassland and forest in Chitwan National Park, Nepal. Vegetatio 111(1):29–43. https://doi.org/10.1007/BF00045575

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random Forest. R News 2(3):18–22

    Google Scholar 

  • Lindsey PA, Chapron G, Petracca LS, Burnham D, Hayward MW, Henschel P, Hinks AE, Garnett ST, Macdonald DW, Macdonald EA, Ripple WJ, Zander K, Dickman A (2017) Relative efforts of countries to conserve world’s megafauna. Glob Ecol Conserv 10:243–252. https://doi.org/10.1016/j.gecco.2017.03.003

    Article  Google Scholar 

  • Linkie M, Guillera-Arroita G, Smith J, Ario A, Bertagnolio G, Cheong F, Clements GR, Dinata Y, Duangchantrasiri S, Fredriksson G, Gumal MT, Horng LS, Kawanishi K, Khakim FR, Kinnaird MF, Kiswayadi D, Lubis AH, Lynam AJ, Maryati MM, Ngoprasert D, Novarino W, O’Brien TG, Parakkasi K, Peters H, Priatna D, Rayan DM, Seuaturien N, Shwe NM, Steinmetz R, Sugesti AM, Sunarto SME, Umponjan M, Wibisono HT, Wong CCT, Zulfahmi (2013) Cryptic mammals caught on camera: assessing the utility of range wide camera trap data for conserving the endangered Asian tapir. Biol Conserv 162:107–115. https://doi.org/10.1016/j.biocon.2013.03.028

    Article  Google Scholar 

  • Marshal JP (2016) Survival estimation of a cryptic antelope via photographic capture-recapture. Afr J Ecol 55:21–29. https://doi.org/10.1111/aje.12304

    Article  Google Scholar 

  • McFarland KP, Rimmer CC, Goetz JE, Aubry Y, Wunderle JM Jr, Sutton A, Townsend JM, Sosa AL, Kirkconnell A (2013) A Winter Distribution Model for Bicknell’s Thrush (Catharus bicknelli), a conservation tool for a threatened migratory songbird. PLoS One 8(1):e53986. https://doi.org/10.1371/journal.pone.0053986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Nath A, Sinha A, Lahkar B et al (2019) In search of Alien: factors influencing the distribution of Chromolaena odorata L. and Mikania micrantha Kunth in the Terai grasslands of Manas National Park, India. Ecol Eng 131:16–26

    Article  Google Scholar 

  • Nawaz M (2008) Ecology, genetics and conservation of Himalayan brown bears. PhD Thesis, Norwegian University of Life Sciences

    Google Scholar 

  • Ortega-Huerta MA, Peterson AT (2004) Modelling spatial patterns of biodiversity for conservation prioritization in north-eastern Mexico. Divers Distrib 10(1):39–54

    Article  Google Scholar 

  • Paul S, Sarkar D, Patil A et al (2020) Assessment of endemic northern swamp deer (Rucervus duvaucelii duvaucelii) distribution and identification of priority conservation areas through modeling and field surveys across North India. Glob Ecol Conserv 24:15. https://doi.org/10.1016/j.gecco.2020.e01263

    Article  Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412

    Article  Google Scholar 

  • Pocock R (1943) The larger deer of British India. J Bombay Nat Hist Soc 43:553–572

    Google Scholar 

  • Qureshi Q, Sawarkar VB, Rahmani AR, Mathur PK (2004) Swamp deer or barasingha (Cervus duvaucelii Cuvier, 1823). In: Sankar K, Goyal SP (eds) Ungulates of India, ENVIS bulletin: wildlife and protected areas, vol 7. Wildlife Institute of India, Dehradun, pp 181–192

    Google Scholar 

  • Rhoden CM, Peterman WE, Taylor CA (2017) Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5:e3632. https://doi.org/10.7717/peerj.3632

    Article  PubMed  PubMed Central  Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, Macdonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh, Van VB (2015) Collapse of the world’s largest herbivores. Sci Adv 1(4):e1400103. https://doi.org/10.1126/sciadv.1400103

    Article  PubMed  PubMed Central  Google Scholar 

  • Ripple WJ, Chapron G, Lopez-Bao JV, Durant SM, Macdonald DW, Lindsey PA, Bennett EL, Beschta RL, Bruskotter JT, Campos-Arceiz A, Corlett RT, Darimont CT, Dickman AJ, Dirzo R, Dublin HT, Estes JA, Everatt KT, Galetti M, Goswami VR, Hayward MW, Hedges S, Hoffmann M, Hunter LTB, Kerley GIH, Letnic M, Levi T, Maisels F, Morrison JC, Nelson MP, Newsome TM, Painter L, Pringle RM, Sandom CJ, Terborgh J, Treves A, Van VB, Vucetich JA, Wirsing AJ, Wallach AD, Wolf C, Woodroffe R, Young H, Zhang L (2016) Saving the world’s terrestrial megafauna. BioScience 66(10):807–812. https://doi.org/10.1093/biosci/biw092

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig ML (1968) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102(923):67–74

    Article  Google Scholar 

  • Roy PS, Meiyappan P, Joshi PK, Kale MP, Srivastav VK, Srivasatava SK, Behera MD, Roy A, Sharma Y, Ramachandran RM, Bhavani P, Jain AK, Krishnamurthy YVN (2016) Decadal land use and land cover classifications across India, 1985, 1995, 2005. ORNL DAAC, Oak Ridge. https://doi.org/10.3334/ORNLDAAC/1336

    Book  Google Scholar 

  • Saikia BP, Rabha A, Saikia PK (2012) Manas: last destination of Swamp Deer (Rucervus duvaucelii) after Kaziranga in North East India. In: Rabha A, Saikia BP (eds) Manas: our good ol’ darling, 1st edn. Bookland Publishers, Guwahati, pp 78–84

    Google Scholar 

  • Sankaran R (1989) Status of the Swamp Deer in Dudhwa National Park (1988–1989). Technical report no. 14. BNHS, Bombay

    Google Scholar 

  • Sankaran R (1990) Status of the Swamp Deer (Cervus duvauceli duvauceli) in the Dudwa National Park, Uttar Pradesh, India. J Bombay Nat Hist Soc 87(2):250–259

    Google Scholar 

  • Sarma PK, Lahkar BP, Ghosh S et al (2008) Land-use and land-cover change and future implication analysis in Manas National Park, India using multi-temporal satellite data. Curr Sci 95:223–227

    Google Scholar 

  • Schaller GB (1967) The deer & the tiger. University of Chicago Press, Chicago

    Google Scholar 

  • Singh A (1970) The swamp deer of North Kheri. In: IUCN 11th Technical Meeting. Problems of threatened species. IUCN Pub New Series 18, vol 2, pp 52–54

    Google Scholar 

  • Sinha A, Nath A, Lahkar BP et al (2022) Understanding the efficacy of different techniques to manage Chromolaena odorata L., an invasive Alien plant in the sub-Himalayan tall grasslands: toward grassland recovery. Ecol Eng 179:106618., ISSN 0925-8574. https://doi.org/10.1016/j.ecoleng.2022.106618

    Article  Google Scholar 

  • Svetnik V, Liaw A, Tong C, Wang T (2004) Application of Breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In: Roli F, Kittler J, Windeatt T (eds) Multiple classifier systems, Lecture notes in computer science. Springer, Heidelberg, pp 334–343

    Chapter  Google Scholar 

  • Tewari R, Rawat GS (2013) Studies on the food and feeding habits of swamp deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel Conservation Reserve, Haridwar, Uttarakhand, India. ISRN Zoology, 278213, p 6. https://doi.org/10.1155/2013/278213

  • Title PO, Bemmels JB (2018) ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41(2):291–307

    Article  Google Scholar 

  • Trouwborst A (2019) Global large herbivore conservation and international law. Biodivers Conserv 28:3891–3914. https://doi.org/10.1007/s10531-019-01856-y

    Article  Google Scholar 

  • Wallach AD, Izhaki I, Toms JD, Ripple WJ, Shanas U (2015) What is an apex predator? Oikos 124:1453–1461. https://doi.org/10.1111/oik.01977

    Article  Google Scholar 

  • Wikramanayake E, Dinerstein E, Loucks C, Olson D, Morrison J, Lamoreux J, McKnight M, Hedao P (2002) Terrestrial ecoregions of the Indo-Pacific: a conservation assessment. Island Press, Washington, DC

    Google Scholar 

  • Wildlife Institute of India (2017) National Studbook of Swamp Deer (Rucervus duvaucelii). Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. TR No 2017/011, 41 pp

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Assam Forest Department and Bodoland Territorial Region for issuing necessary permits for various field-based studies that form part of this paper. The Field Directorate of Manas Tiger Project and the forest frontline staffs are thanked for the logistics support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: List of 36 Habitat Variables Used for Habitat Suitability Modelling for Eastern Swamp Deer

Appendix: List of 36 Habitat Variables Used for Habitat Suitability Modelling for Eastern Swamp Deer

Predictor variable

Source

Description

Units

Group 1: Climate

Annual potential evapotranspiration (PET)

ENVIREM (http://envirem.github.io; Title and Bemmels 2018)

Mean monthly estimates

mm/month

PET seasonality

Monthly variability in potential evapotranspiration

mm/month

PET of the coldest quarter

Mean monthly PET of the coldest quarter

mm/month

PET of the driest quarter

Mean monthly PET of the driest quarter

mm/month

PET of the warmest quarter

Mean monthly PET of the warmest quarter

mm/month

PET of the wettest quarter

Mean monthly PET of the wettest quarter

mm/month

Maximum temperature of the coldest month

Maximum temperature of the coldest month, i.e. January

°C

Minimum temperature of the warmest month

Minimum temperature of the warmest month, i.e. June

°C

Climatic moisture index

A metric of relative wetness and aridity

–

Bio1

WorldClim (https://www.worldclim.org/; Hijmans et al. 2005)

Mean estimates

°C

Bio2

Mean estimates

°C

Bio3

Mean estimates

°C

Bio4

Mean estimates

°C

Bio5

Mean estimates

°C

Bio6

Mean estimates

°C

Bio7

Mean estimates

°C

Bio8

Mean estimates

°C

Bio9

Mean estimates

°C

Bio10

Mean estimates

°C

Bio11

Mean estimates

°C

Bio12

Mean estimates

mm

Bio13

Mean estimates

mm

Bio14

Mean estimates

mm

Bio15

Mean estimates

mm

Bio16

Mean estimates

mm

Bio17

Mean estimates

mm

Bio18

Mean estimates

mm

Bio19

Mean estimates

mm

Group 2: Vegetation

Land cover and vegetation indices

Grasslands

Roy et al. 2016

 

%

Largest patch index

 

Calculated based on the grassland land cover type using the software FRAGSTATS

%

Group 3: Topographic

Elevation

CGIAR-CSI

SRTM elevation data at 90 m resolution

m

Compound topographic index (CTI)

 

Calculated based on the elevation data using the Geomorphometry and Gradient Metrix Toolbox in ArcGIS (Evans and Cushman 2009)

–

Water bodies

Roy et al. 2016

 

%

Distance to rivers

HydroSHEDS database (http://hydrosheds.cr.usgs.gov)

River networks and was used to calculate the distance to river variable

m

Group 4: Disturbance

Human footprint

Last of the Wild, v2 (http://sedac.ciesin.columbia.edu/wildareas/)

Anthropogenic impacts on the environment for the period 1995–2004, Last of the Wild Data Version 2, 2005

%

Distance to roads

DIVA-GIS (diva-gis.org/gdata)

Road networks and was used to calculate the road density variable

m

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nath, A., Islam, N., Dar, S.A., Sinha, A., Lahkar, B.P., Ghosh, S. (2023). Factors Affecting the Habitat Suitability of Eastern Swamp Deer (Rucervus duvaucelii ranjitsinhi Groves, 1982) in Manas National Park and Implication for Terai Grassland Restoration. In: Dhyani, S., Adhikari, D., Dasgupta, R., Kadaverugu, R. (eds) Ecosystem and Species Habitat Modeling for Conservation and Restoration. Springer, Singapore. https://doi.org/10.1007/978-981-99-0131-9_15

Download citation

Publish with us

Policies and ethics