Skip to main content

Machine Learning Technique for Few-Mode Fiber Design with Inverse Modelling for 5G and Beyond

  • Chapter
  • First Online:
Paradigms of Smart and Intelligent Communication, 5G and Beyond

Abstract

The next generation of communication, 5G and beyond works to connect people and things via intelligent networks. It is difficult to handle this massive data traffic with the current network architectures. The vision of the 5G network is to form a truly smart city or a connected society. But before 5G converts to the truth we need to reconstruct the network architecture to handle Trillions of Megabits and Billions of connected devices. To handle this huge data traffic the spatial domain of the fiber is highly useful. In this work, we have reviewed the requirements of 5G networks and how these can be handled by spatial multiplexing and mode multiplexing through a few-mode optical fiber. The conventional design of few-mode fiber with a complex structure is time-consuming and fixed for a given fiber structure. This article demonstrates the machine learning-based inverse modeling of the triangular-ring-core few-mode fiber profile with weak coupling optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 5G networks impact on fiber-optic cabling requirements (2022)

    Google Scholar 

  • Agrawal GP (2012) Fiber-optic communication systems. John Wiley & Sons

    Google Scholar 

  • Behera B, Varshney SK, Mohanty MN (2021) Structure for fast photonic medium on application of SDM communication using SiO2 doped with GeO2, and F materials. IET Nanodielectrics 4:107–120

    Article  Google Scholar 

  • Behera B, Mohanty MN (2019) Design of bend-limited large-mode area dispersion shifted few-mode fiber for fast communication. In: 2019 international conference on applied machine learning (ICAML), pp 277–281

    Google Scholar 

  • Chen CP, Liu Z (2017) Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans Neural Netw Learn Syst 29:10–24

    Article  MathSciNet  Google Scholar 

  • Chen S, Tong Y, Tian H (2020) Eight-mode ring-core few-mode fiber using cross-arranged different-material-filling side holes. Appl Opt 59:4634–4641

    Article  Google Scholar 

  • Chugh S, Gulistan A, Ghosh S, Rahman B (2019) Machine learning approach for computing optical properties of a photonic crystal fiber. Opt Express 27:36414–36425

    Article  Google Scholar 

  • Community F. 5 types of optical fibers for 5G networks

    Google Scholar 

  • Desurvire EB (2006) Capacity demand and technology challenges for lightwave systems in the next two decades. J Lightwave Technol 24:4697–4710

    Article  Google Scholar 

  • Essiambre R-J, Kramer G, Winzer PJ, Foschini GJ, Goebel B (2010) Capacity limits of optical fiber networks. J Lightwave Technol 28:662–701

    Article  Google Scholar 

  • Ferreira FM, Costa CS, Sygletos S, Ellis AD (2017) On the feasibility of mode-division multiplexed transmission over few-mode fibres. In: 2017 SBMO/IEEE MTT-S international microwave and optoelectronics conference (IMOC), pp 1–5

    Google Scholar 

  • Gasulla I, Capmany J (2019) Multicore fibres for 5G fronthaul evolution. Optical and Wireless Convergence for 5G Networks, pp 79–100

    Google Scholar 

  • Ge D, Gao Y, Yang Y, Shen L, Li Z, Chen Z, He Y, Li J (2019) A 6-LP-mode ultralow-modal-crosstalk double-ring-core FMF for weakly-coupled MDM transmission. Optics Commun 451:97–103

    Article  Google Scholar 

  • Ge D, Li J, Zhu J, Shen L, Gao Y, Yu J, Wu Z, Li Z, Chen Z, He Y (2018) Design of a weakly-coupled ring-core FMF and demonstration of 6-mode 10-km IM/DD transmission. In: 2018 optical fiber communications conference and exposition (OFC), pp 1–3

    Google Scholar 

  • Han J, Li Y, Zhang J (2018) Design of an improved radially single-mode and azimuthally multimode ring-core fiber for mode-division multiplexing systems. In: 2018 Asia communications and photonics conference (ACP), pp 1–3

    Google Scholar 

  • He Z, Du J, Chen X, Shen W, Huang Y, Wang C, Xu K, He Z (2020) Machine learning aided inverse design for few-mode fiber weak-coupling optimization. Opt Express 28:21668–21681

    Article  Google Scholar 

  • Jiang S, Ma L, Zhang Z, Xu X, Wang S, Du J, Yang C, Tong W, He Z (2018) Design and characterization of ring-assisted few-mode fibers for weakly coupled mode-division multiplexing transmission. J Lightwave Technol 36:5547–5555

    Article  Google Scholar 

  • Jin X, Gomez A, Shi K, Thomsen BC, Feng F, Gordon GS, Wilkinson TD, Jung Y, Kang Q, Barua P (2016) Mode coupling effects in ring-core fibers for space-division multiplexing systems. J Lightwave Technol 34:3365–3372

    Article  Google Scholar 

  • Jung Y, Kang Q, Zhou H, Zhang R, Chen S, Wang H, Yang Y, Jin X, Payne FP, Alam S, Richardson DJ (2017) Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission. J Lightwave Technol 35:1363–1368

    Google Scholar 

  • Kasahara M, Saitoh K, Sakamoto T, Hanzawa N, Matsui T, Tsujikawa K, Yamamoto F (2014) Design of three-spatial-mode ring-core fiber. J Lightwave Technol 32:1337–1343

    Article  Google Scholar 

  • Kitayama K-I, Diamantopoulos N-P (2017) Few-mode optical fibers: original motivation and recent progress. IEEE Commun Mag 55:163–169

    Article  Google Scholar 

  • Lagkas T, Klonidis D, Sarigiannidis P, Tomkos I (2020) 5G/NGPON evolution and convergence: developing on spatial multiplexing of optical fiber links for 5G infrastructures. Fiber Integr Opt 39:4–23

    Article  Google Scholar 

  • Liu X (2019) Evolution of fiber-optic transmission and networking toward the 5G era. Iscience 22:489–506

    Article  Google Scholar 

  • Liu J, Zhu G, Zhang J, Wen Y, Wu X, Zhang Y, Chen Y, Cai X, Li Z, Hu Z (2018) Mode division multiplexing based on ring core optical fibers. IEEE J Quantum Electron 54:1–18

    Google Scholar 

  • Memon A, Chen K (2021) Recent advances in mode converters for a mode division multiplex transmission system. Opto-Electron Rev 29

    Google Scholar 

  • Rademacher G, Luís RS, Puttnam BJ, Eriksson TA, Ryf R, Agrell E, Maruyama R, Aikawa K, Awaji Y, Furukawa H, Wada N (2019) High capacity transmission with few-mode fibers. J Lightwave Technol 37:425–432

    Article  Google Scholar 

  • Richardson D, Fini J, Nelson LE (2013) Space-division multiplexing in optical fibres. Nat Photonics 7:354

    Article  Google Scholar 

  • Rjeb A, Seleem H, Fathallah H, Machhout M (2020) Design of 12 OAM-Graded index few mode fibers for next generation short haul interconnect transmission. Opt Fiber Technol 55:102148

    Article  Google Scholar 

  • Shen L, Chen S, Sun X, Liu Y, Zhang L, Hu T, Li J (2018) Design, fabrication, measurement and MDM transmission of a novel weakly-coupled ultra low loss FMF. In: 2018 optical fiber communications conference and exposition (OFC), pp 1–3

    Google Scholar 

  • Sillard P, Bigot-Astruc M, Molin D (2014) Few-mode fibers for mode-division-multiplexed systems. J Lightwave Technol 32:2824–2829

    Google Scholar 

  • Sillard P, Molin D, Bigot-Astruc M, Jongh KD, Achten F, Antonio-López JE, Amezcua-Correa R (2017) Micro-bend-resistant low-differential-mode-group-delay few-mode fibers. J Lightwave Technol 35:734–740

    Google Scholar 

  • Soma D, Wakayama Y, Igarashi K, Tsuritani T (2017) Partial MIMO-based 10-mode-multiplexed transmission over 81km weakly-coupled few-mode fiber. In: Optical fiber communication conference, vol 4. Optical Society of America, pp M2D

    Google Scholar 

  • Su Y, Zhangsun T, Ren F, Zhang Y, Yin J, Chen W, Fan X, Wang J (2020) Design of solid-core Bragg few-mode fiber for short-reach MDM networks in O+ C+ L band. Optics Commun 461:125245

    Article  Google Scholar 

  • Su Y, He Y, Chen H, Li X, Li G (2021) Perspective on mode-division multiplexing. Appl Phys Lett 118:200502

    Article  Google Scholar 

  • Wang G, Zhang J, Zhang H, Wang F, Yan X, Zhang X, Li S, Cheng T (2021) A low crosstalk multi-core few-mode fiber with composite refractive index profile and air-hole embedded trench assistance. Optics Commun 499:127258

    Article  Google Scholar 

  • Winzer PJ (2010) Beyond 100G ethernet. IEEE Commun Mag 48:26–30

    Article  Google Scholar 

  • Zhang H, Zhao J, Yang Z, Peng G, Di Z (2019) Low-DMGD, large-effective-area and low-bending-loss 12-LP-mode fiber for mode-division-multiplexing. IEEE Photonics J 11:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Narayan Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, B., Das, A., Mohanty, M.N. (2023). Machine Learning Technique for Few-Mode Fiber Design with Inverse Modelling for 5G and Beyond. In: Rai, A., Kumar Singh, D., Sehgal, A., Cengiz, K. (eds) Paradigms of Smart and Intelligent Communication, 5G and Beyond. Transactions on Computer Systems and Networks. Springer, Singapore. https://doi.org/10.1007/978-981-99-0109-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0109-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0108-1

  • Online ISBN: 978-981-99-0109-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics