Skip to main content

Deep Linear Discriminant Analysis with Variation for Polycystic Ovary Syndrome Classification

  • Conference paper
  • First Online:
Intelligent Computing and Networking

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 632))

Abstract

The polycystic ovary syndrome diagnosis is a problem that can be leveraged using prognostication based learning procedures. Many implementations of PCOS can be seen with Machine Learning but the algorithms have certain limitations in utilizing the processing power graphical processing units. The simple machine learning algorithms can be improved with advanced frameworks using Deep Learning. The Linear Discriminant Analysis is a linear dimensionality reduction algorithm for classification that can be boosted in terms of performance using deep learning with Deep LDA, a transformed version of the traditional LDA. In this result oriented paper we present the Deep LDA implementation with a variation for prognostication of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marshall G, Jonker L (2011) An introduction to inferential statistics: a review and practical guide. Radiography 17

    Google Scholar 

  2. Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3):1–21

    Article  MathSciNet  Google Scholar 

  3. Ndefo UA, Eaton A, Green MR (2013) Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. Pharmacy Therap 38(6):336

    Google Scholar 

  4. Cormack RM (1971) A review of classification. J Roy Stat Soc Ser A (Gen) 134(3):321–367. http://www.jstor.org/stable/2344237

  5. Kumari R, Srivastava SK (2017) Machine learning: a review on binary classification. Int J Comput Appl 160(7):11–15. https://doi.org/10.5120/ijca2017913083, http://www.ijcaonline.org/archives/volume160/number7/27084-2017913083

  6. Chauhan P, Patil P, Rane N, Raundale P, Kanakia H (2021) Comparative analysis of machine learning algorithms for prediction of pcos. In: 2021 international conference on communication information and computing technology (ICCICT), pp 1–7. https://doi.org/10.1109/ICCICT50803.2021.9510128

  7. Kanvinde N, Gupta A, Joshi R (2022) Binary classification for high dimensional data using supervised non-parametric ensemble method. arXiv preprint arXiv:2202.07779

  8. Gupta A, Soni H, Joshi R, Laban RM (2022) Discriminant analysis in contrasting dimensions for polycystic ovary syndrome prognostication. arXiv preprint arXiv:2201.03029

  9. Nair S, Gupta A, Joshi R, Chitre V (2022) Combining varied learners for binary classification using stacked generalization. arXiv preprint arXiv:2202.08910

  10. Gupta AM, Shetty SS, Joshi RM, Laban RM (2021) Succinct differentiation of disparate boosting ensemble learning methods for prognostication of polycystic ovary syndrome diagnosis. In: 2021 international conference on advances in computing, communication, and control (ICAC3). IEEE, pp 1–5

    Google Scholar 

  11. Gupta A, Nair S, Joshi R, Chitre V (2022) Residual-concatenate neural network with deep regularization layers for binary classification. arXiv preprint arXiv:2205.12775

  12. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  13. Goodfellow I, Bengio Y, Courville A (2016) Deep learning

    Google Scholar 

  14. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  15. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning, pp 108–122

    Google Scholar 

  16. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org

  17. King LJ (1970) Discriminant analysis: a review of recent theoretical contributions and applications. Econ Geogr 46:367–378. http://www.jstor.org/stable/143150

  18. Das Gupta S (1980) Discriminant analysis. In: Fienberg SE, Hinkley DV, Fisher RA (eds) An appreciation. Springer New York, New York, NY, pp 161–170

    Google Scholar 

  19. Tharwat A, Gaber T, Ibrahim A, Hassanien AE (2017) Linear discriminant analysis: a detailed tutorial. AI Commun 30:169–190

    Article  MathSciNet  Google Scholar 

  20. Dorfer M, Kelz R, Widmer G (2015) Deep linear discriminant analysis. arXiv preprint arXiv:1511.04707

  21. Tian Q, Arbel T, Clark JJ (2017) Deep lda-pruned nets for efficient facial gender classification. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 512–521. https://doi.org/10.1109/CVPRW.2017.78

  22. LeCun Y, Bengio Y et al. Convolutional networks for images, speech, and time series

    Google Scholar 

  23. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: Concepts, cnn architectures, challenges, applications, future directions. J Big Data 8(1):1–74

    Google Scholar 

  24. Gupta A, Joshi R, Laban R (2022) Detection of tool based edited images from error level analysis and convolutional neural network. arXiv preprint arXiv:2204.09075

  25. Joshi RM, Shah D (2022) Refactoring faces under bounding box using instance segmentation algorithms in deep learning for replacement of editing tools. In: Intelligent computing and networking. Springer, pp 236–247

    Google Scholar 

  26. Cortes C, Mohri M, Rostamizadeh A (2012) L2 regularization for learning kernels. arXiv preprint arXiv:1205.2653

  27. Minai AA, Williams RD (1993) Original contribution: on the derivatives of the sigmoid. Neural Netw 6(6):845–853. https://doi.org/10.1016/S0893-6080(05)80129-7

  28. Agarap AF (2018) Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375

  29. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  30. Chollet F et al (2015) Keras. https://github.com/fchollet/keras

  31. Hearst M, Dumais S, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst Their Appl 13(4):18–28. https://doi.org/10.1109/5254.708428

    Article  Google Scholar 

  32. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(56):1929–1958. http://jmlr.org/papers/v15/srivastava14a.html

  33. Powers DM (2020) Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation. Xiv preprint arXiv:2010.16061

  34. Ting KM (2017) Confusion matrix. Encyclop Mach Learn Data Mining 260

    Google Scholar 

  35. Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In: European conference on information retrieval. Springer, pp 345–359

    Google Scholar 

Download references

Acknowledgements

We would genuinely like to thank Mr. Prasoon Kottarathil for making the polycystic ovary syndrome dataset available through Kaggle platform. We would also like to deeply thank for the contributions of VahidooX - https://github.com/VahidooX/DeepLDA and Thomas Chaton https://github.com/tchaton/DeepLDA for providing us the basic implementations of Deep LDA based from the original paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joshi, R., Gupta, A., Soni, H., Laban, R. (2023). Deep Linear Discriminant Analysis with Variation for Polycystic Ovary Syndrome Classification. In: Balas, V.E., Semwal, V.B., Khandare, A. (eds) Intelligent Computing and Networking. Lecture Notes in Networks and Systems, vol 632. Springer, Singapore. https://doi.org/10.1007/978-981-99-0071-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0071-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0070-1

  • Online ISBN: 978-981-99-0071-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics