Skip to main content

New Developments in Techniques Like Metagenomics and Metaproteomics for Isolation, Identification, and Characterization of Microbes from Varied Environment

  • Chapter
  • First Online:
Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate

Abstract

Most of the world’s microbial diversity is comprised of culture-independent microorganisms. In the natural environment, 99% of microbes are unculturable, which means that only 1% of microbes are capable of being cultured in a laboratory setting. Consequently, it is necessary to develop culture-independent approaches for the identification and characterization of such microbes and the evaluation of the role they play in the environment. Metagenomics, metaproteomics, etc. technologies are being developed to tackle new challenges and provide alternatives to traditional microbiology. Metagenomics focuses on the genetic and evolutionary relationship, microbial diversity, functional activities, and interaction with varied environments. Similarly, metaproteomics focuses on the protein composition of a complex sample as well as helps in the identification and quantification of protein. Also, metaproteomics detects proteins at a posttranslational level that gives a broader idea of the protein’s function. In this chapter, new developments in techniques like Oxford Nanopore sequencing with advanced bioinformatics tools, metagenome-assembled genomes (MAGs), and new techniques for the isolation, identification, and characterization of microbes from different environments will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLAST:

Basic local alignment search tool

DNA:

Deoxyribonucleic acid

EggNOG:

Evolutionary genealogy of genes non-supervised orthologous groups

ESI:

Electrospray ionization

HPLC:

High-performance liquid chromatography

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LAST:

Local alignment search tool

LC-MS:

Liquid chromatography-mass spectrometry

MAGs:

Metagenome-assembled genomes

MALDI-TOF:

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry

MAP:

MinION Access Program

MS:

Mass spectrometry

MudPIT:

Multidimensional protein identification technology

NCBI:

National Center for Biotechnology Information

NGS:

Next-generation sequencing

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

SAGs:

Single amplified genomes

SCX:

Strong cation exchange column

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SMRT:

Single-molecule real time

ZMW:

Zero-mode waveguide

References

  • Ashton PM, Nair S, Dallman T et al (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296–302

    Article  CAS  PubMed  Google Scholar 

  • Fenn JB, Mann M, Meng CK et al (1990) ChemInform abstract: electrospray ionization for mass spectrometry of large biomolecules. ChemInform 246(4926):64–71

    Google Scholar 

  • Frith MC, Hamada M, Horton P (2010) Parameters for accurate genome alignment. BMC Bioinformatics 11(1):1–14

    Google Scholar 

  • Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964

    Article  CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  • Graham C, McMullan G, Graham RLJ (2011) Proteomics in the microbial sciences. Bioeng Bugs 2:17–30

    Article  PubMed  Google Scholar 

  • Greninger AL, Naccache SN, Federman S et al (2015) Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:1–13

    Article  Google Scholar 

  • Haft DH, DiCuccio M, Badretdin A et al (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46:D851–D860

    Article  CAS  PubMed  Google Scholar 

  • Harris MA, Clark J, Ireland A et al (2004) The gene oncology (GO) database and informatics resource. Nucleic Acids Res 32:258–261

    Article  Google Scholar 

  • Heyer R, Schallert K, Zoun R et al (2017) Challenges and perspectives of metaproteomic data analysis. J Biotechnol 261:24–36

    Article  CAS  PubMed  Google Scholar 

  • Hillenkamp F, Karas M (1990) Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol 193:280–295

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314

    Article  CAS  PubMed  Google Scholar 

  • Issa Isaac N, Philippe D, Nicholas A et al (2019) Metaproteomics of the human gut microbiota: challenges and contributions to other OMICS. Clin Mass Spectrom 14:18–30

    Article  PubMed  Google Scholar 

  • Josic D, Kovac S (2010) Reversed-phase high performance liquid chromatography of proteins. Curr Protoc Protein Sci 2010:1–22

    Google Scholar 

  • Kleiner M (2019) Metaproteomics: much more than measuring gene expression in microbial communities. mSystems 4(3):e00115–e00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiner M, Thorson E, Sharp CE et al (2017) Assessing species biomass contributions in microbial communities via metaproteomics. Nat Commun 8(1):1–14

    Article  CAS  Google Scholar 

  • Ko KKK, Chng KR, Nagarajan N (2022) Metagenomics-enabled microbial surveillance. Nat Microbiol 7:486–496

    Article  CAS  PubMed  Google Scholar 

  • Li N, Cai Q, Miao Q et al (2021) High-throughput metagenomics for identification of pathogens in the clinical settings. Small Methods 5:1–27

    Google Scholar 

  • Liu S, Moon CD, Zheng N et al (2022) Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome 10:1–14

    Article  Google Scholar 

  • Moss EL, Maghini DG, Bhatt AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 38:701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quick J, Ashton P, Calus S et al (2015) Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol 16(1):1–14

    Article  CAS  Google Scholar 

  • Raza S, Ameen A (2017) International journal of advances in scientific research metaproteomics approaches and techniques: a review. Int J Adv Sci Res 3:49–51

    Article  Google Scholar 

  • Sachsenberg T, Herbst FA, Taubert M et al (2015) MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res 14:619–627

    Article  CAS  PubMed  Google Scholar 

  • Tanca A, Palomba A, Pisanu S et al (2015) Enrichment or depletion? The impact of stool pretreatment on metaproteomic characterization of the human gut microbiota. Proteomics 15:3474–3485

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  CAS  PubMed  Google Scholar 

  • Vizca JA, Csordas A, Griss J et al (2016) Erratum: 2016 update of the PRIDE database and its related tools (Nucleic Acids Research (2016) 44:D1 D447-D456)

    Google Scholar 

  • White RA, Bottos EM, Roy Chowdhury T et al (2016) Moleculo long-read sequencing facilitates assembly and genomic binning from complex soil metagenomes. mSystems 1:1–15

    Article  Google Scholar 

  • Yu X, Jiang W, Shi Y et al (2019) Applications of sequencing technology in clinical microbial infection. J Cell Mol Med 23:7143–7150

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chen FX, Zeng Z et al (2021) Advances in metagenomics and its application in environmental microorganisms. Front Microbiol 12:1–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, K., Upadhye, V.J., Shrivastav, A. (2023). New Developments in Techniques Like Metagenomics and Metaproteomics for Isolation, Identification, and Characterization of Microbes from Varied Environment. In: Mathur, P., Kapoor, R., Roy, S. (eds) Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0030-5_18

Download citation

Publish with us

Policies and ethics