Skip to main content

Bamboo-Based Forest Landscape Restoration: Practical Lessons and Initiatives to Upscale in Africa

Part of the Environmental Footprints and Eco-design of Products and Processes book series (EFEPP)

Abstract

Studies suggest that the restoration of degraded land through planting bamboo could be a viable strategy for forest landscape restoration. As part of more extensive landscape restoration, planting bamboo in degraded and marginal landscapes have the potential to restore its productive use and ecosystem services, thus improving the adaptive capacity and resilience of such systems under the accelerated climate change phenomenon. However, using bamboo in landscape restoration has yet to receive significant attention primarily due to data scarcity, scattered or even missing in the literature, and general poor perception, thus contributing to less attention at policy and development planning levels. The lack of adequate information has hindered the potential usefulness of bamboo in landscape restoration and climate change adaptation and mitigation. Therefore, this chapter aims to review and assemble existing knowledge on bamboo resources related to its ability to restore the degraded forest landscape and its contribution to climate change mitigation and adaptation. The chapter, therefore, also aims to highlight promising practices deemed viable to inform decision-makers and to upscale in Africa, which has a bamboo potential of about 115 species covering 7.2 million ha. We highlighted specific key characteristics of bamboo in forest landscape restoration, such as rapid growth, soil binding, and erosion control properties, adaptive capability, nutrient and water conservation, and the provision of a continuous and permanent canopy. Furthermore, we examined its contributions to direct and indirect human well-being through ecosystem services. It is concluded that bamboo has enormous potentiality in landscape restoration vis-a-vis climate change adaptation and mitigation. Finally, it is suggested to initiate an action call for good practices to restore degraded forest landscapes in Africa within frameworks of initiatives such as the REDD + strategy, Bonn Challenge, Afr100 initiative, and the Great Green Wall incorporating bamboo as one of the essential components.

Keywords

  • Bamboo resource
  • Forest landscape
  • Restoration
  • Ecosystem services
  • Climate mitigation and adaptation
  • Practical lessons
  • Africa

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adu-Bredu S, Samuel TP, Akwasi D-G, James K, Govina FI, Ernest NA, Michael YK (in press) Bambusa vulgaris allometry for biomass estimation in tropical forest reserves in Ghana. Forests 13 x. https://doi.org/10.3390/xxxxx

  2. Amoah M, Assan F, Dadzie PK (2020) Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica and Bambusa vulgaris var. vitata plantations in the Bobiri forest reserve of Ghana. J Sustain For 39(2):113–136

    Google Scholar 

  3. Amundson R, Biardeau L (2018) Soil carbon sequestration is an elusive climate mitigation tool. Proc Natl Acad Sci 115(46):11652–11656. https://doi.org/10.1073/pnas.1815901115

    CrossRef  CAS  Google Scholar 

  4. Anonymous (2004) Economics of Bamboo boring : a study of the North-East Region of Bihar. Planning Commission (SER Division) Government of India New Delhi, p 88

    Google Scholar 

  5. Bamboo and Rattan Update [BRU] (2020) Asia and the Pacific: reflections on 25 Years. INBAR Magazine. www.inbar.int

  6. Banik RL (2016) Bambusa. In: Silviculture of South Asian priority bamboos. Springer, Singapore, pp 21–115. https://doi.org/10.1007/978-3-319-14133-6_5

  7. Banik RL (2000) Silviculture and field guide to priority bamboos of Bangladesh and South Asia. p 186

    Google Scholar 

  8. Baral H, Leksono B, Seol M (2022) Bioenergy for landscape restoration and livelihoods: re-creating energy-smart ecosystems on degraded landscapes

    Google Scholar 

  9. Baral H, Guariguata MR, Keenan RJ (2016) A proposed framework for assessing ecosystem goods and services from planted forests. Ecosyst Serv 22:260–268. https://doi.org/10.1016/j.ecoser.2016.10.002

    CrossRef  Google Scholar 

  10. Benton A (2015) Priority species of bamboo. In: Liese W, Köhl M (eds) Bamboo, Tropical Forestry, vol 10, pp 31–41. https://doi.org/10.1007/978-3-319-14133-6_2

  11. Ben-Zhi Z, Mao-Yi F, Jin-Zhong X, Xiao-Sheng Y, Zheng-Cai L (2005) Ecological functions of bamboo forest: research and application. J For Res 16(2):143–147

    CrossRef  Google Scholar 

  12. Bhatt BP, Singha LB, Singh K, Sachan MS (2003) Some commercial edible bamboo species of North East India: production, indigenous uses, cost-benefit and management strategies. Bamboo Sci Cult 17(1):4–20

    Google Scholar 

  13. Bishop J, Brink PT, Gundimeda H, Kumar P, Nesshöver C, Schröter-Schlaack C, Simmons B, Sukhdev P, Wittmer H (2010) The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. Project Code C08–0170–0062, p 69

    Google Scholar 

  14. Brahma B, Pathak K, Lal R, Kurmi B, Das M, Nath PC, Nath AJ, Das AK (2018) Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degrad Dev 29(1):15–25. https://doi.org/10.1002/ldr.2816

    CrossRef  Google Scholar 

  15. Buckingham K (2014) Bamboo: the secret weapon in forest and landscape restoration?. https://www.wri.org/insights/bamboo-secret-weapon-forest-and-landscape-restoration

  16. Buckingham KC, Wu L, Lou Y (2014) Can’t see the (bamboo) forest for the trees: examining bamboo’s fit within international forestry institutions. Ambio 43(6):770–778. https://doi.org/10.1007/s13280-013-0466-7

    CrossRef  CAS  Google Scholar 

  17. Bystriakova N, Kapos V, Lysenko I (2004) Bamboo diversity. UNEP-WCMC/INBAR

    Google Scholar 

  18. Ceccon E, Gómez-Ruiz PA (2019) Las funciones ecológicas de los bambúes en la recuperación de servicios ambientales y en la restauración productiva de ecosistemas. Rev Biol Trop 67(4):679–691

    Google Scholar 

  19. Chen S, Jiang H, Cai Z, Zhou X, Peng C (2018) The response of the net primary production of Moso bamboo forest to the on and off-year management: a case study in Anji County, Zhejiang, China. For Ecol Manage 409:1–7. https://doi.org/10.1016/j.foreco.2017.11.008

    CrossRef  Google Scholar 

  20. Chimi DC, Nfornkah BN, Forje GW, Awazi NP, Kaam R, Nguefack AJ, Tatang M, Atoupka AM, Gansonkeng ZJC, Tabue MRB, Inimbock SL (2021) Indigenous knowledge of bamboo products and uses in the Western highlands of cameroon. Asian J Res Agric For 7:22–30. https://doi.org/10.9734/AJRAF/2021/v7i230125

    CrossRef  Google Scholar 

  21. Choudhury D, Sahu JK, Sharma GD (2012) Value addition to bamboo shoots: a review. J Food Sci Technol 49(4):407–414

    CrossRef  CAS  Google Scholar 

  22. Chuchón JEC, Cárdenas RP, Durai J, Long TT, Li Y (2021) Ecosystem services and cost-benefit analysis of natural forests and mixed bamboo systems in Peru. INBAR Working Paper. Beijing: INBAR

    Google Scholar 

  23. Darabant A, Haruthaithanasan M, Atkla W, Phudphong T, Thanavat E, Haruthaithanasan K (2014) Bamboo biomass yield and feedstock characteristics of energy plantations in Thailand. Energy Proc 59:134–141

    CrossRef  Google Scholar 

  24. Darlow Enterprise (2013) Business plan for the propagation of micro propagated bamboo in Ghana. Unpublished

    Google Scholar 

  25. Das S, Saha M (2013) Preparation of carbon nanosphere from bamboo and its use in water purification. Curr Trends Tech Sci 2:174–177

    Google Scholar 

  26. Debnath N, Nath A, Sileshi GW, Nath AJ, Nandy S, Das AK (2022) Determinants of phytolith occluded carbon in bamboo stands across forest types in the eastern Indian Himalayas. Sci Total Environ 159568. https://doi.org/10.1016/j.scitotenv.2022.159568

  27. Dev I, Ram A, Ahlawat SP, Palsaniya DR, Singh R, Dhyani SK, Kumar N, Tewari RK, Singh M, Babanna SK, Newaj R (2020) Bamboo-based agroforestry system (Dendrocalamus strictus+ sesame–chickpea) for enhancing productivity in semi-arid tropics of central India. Agrofor Syst 94(5):1725–1739. https://doi.org/10.1007/s10457-020-00492-8

    CrossRef  Google Scholar 

  28. Du H, Mao F, Li X, Zhou G, Xu X, Han N, Sun S, Gao G, Cui L, Li Y, Zhu D (2018) Mapping global bamboo forest distribution using multisource remote sensing data. IEEE J Select Top Appl Earth Observ Remote Sens 11(5):1458–1471

    CrossRef  Google Scholar 

  29. Bamboo E (2014) 4.6 Commercial bamboo plantations as a tool for restoring landscapes. In: Towards productive landscapes. p 139

    Google Scholar 

  30. Ecoplanet Bamboo (2015) Restoring landand reducing deforestation. http://www.ecoplanetbamboo.com/globalplantations

  31. Effah B, Boampong E, Asibey O, Pongo NA, Nkrumah A (2014) Small and medium bamboo and rattan enterprises in economic empowerment in Kumasi: perspectives of producers. J Soc Econ 1(1):11–21

    Google Scholar 

  32. Embaye K, Weih M, Ledin S, Christersson L (2005) Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: implications for management. For Ecol Manage 204(2–3):159–169. https://doi.org/10.1016/j.foreco.2004.07.074

    CrossRef  Google Scholar 

  33. FAO and INBAR (2018) Bamboo for land restoration. INBAR Policy Synthesis Report 4. INBAR: Beijing, China. http://www.inbar.int/sites/default/files/resources/

  34. FAO and UNEP (2020) The state of the world’s forests 2020. In: Forests, biodiversity and people. Rome https://doi.org/10.4060/ca8642en

  35. FAO (2015) Forest and landscape restoration. Unasylva 245, 66, 2015/3. ISSN 0041–6436

    Google Scholar 

  36. FAO (2011) Assessing forest degradation. Towards the development of globally applicable guidelines. Forest Resources Assessment Working Paper No. 177. Rome

    Google Scholar 

  37. FAO (2012) Mainstreaming climate-smart agriculture into a broader landscape approach. In: Background paper for the second global conference on agriculture, food security and climate change. Hanoi, Vietnam, pp 3–7

    Google Scholar 

  38. FAO (2020) Global forest resources assessment 2020–Key findings. Rome. https://doi.org/10.4060/ca8753en

  39. Feleke S, Tesfaye K, Tebeje A (2012) Physicochemical characteristics of Bamboo shoots from Yushaniaalpina and Oxytenantheraabyssinica growing in Ethiopia. In: Tadesse W, Desalegn G and Yirgu A (eds) Forestry and forest products: technologies and issues. Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia

    Google Scholar 

  40. Gagliano J, Anselmo-Moreira F, Sala-Carvalho WR, Furlan CM (2021) What is known about the medicinal potential of bamboo? Adv Trad Med 1–29. https://doi.org/10.1007/s13596-020-00536-5

  41. GLF (2014) Global landscapes forum. http://www.landscapes.org/glf-2014/about/

  42. GPFLR (n.d) Global partnership on forest landscape restoration. http://www.forestlandscaperestoration.org/

  43. Grueter CC, Robbins MM, Abavandimwe D, Ortmann S, Mudakikwa A, Ndagijimana F, Vecellio V, Stoinski TS (2016) Elevated activity in adult mountain gorillas is related to consumption of bamboo shoots. J Mammal 97(6):1663–1670. https://doi.org/10.1093/jmammal/gyw132

    CrossRef  Google Scholar 

  44. Guomo ZHOU, Peikun JIANG (2004) Density, storage and spatial distribution of carbon in Phyllostachy pubescens forest. Sci Silvae Sin 40(6):20–24. https://doi.org/10.11707/j.1001-7488.20040604

  45. Hall JB, Inada T (2008) Sinarundinaria alpina (K. Schum.) CS Chao & Renvoize. Plant Resourc Trop Afr 7(1):508–512

    Google Scholar 

  46. Hiraoka M, Onda Y (2012) Factors affecting the infiltration capacity in bamboo groves. J For Res 17(5):403–412

    CrossRef  CAS  Google Scholar 

  47. INBAR (2018) Bamboo for land restoration. INBAR Policy Synthesis Report 5. INBAR: Beijing, China

    Google Scholar 

  48. INBAR (2022) Bamboo & Rattan update Africa: reflections on 25 Years: sharing the latest news and activities from the bamboo and rattan sector. https://www.inbar.int/wp-ntent/uploads/2022/04/BRU_V3I1_INBAR_Reflections-Africa-25-Years

  49. INBAR (1999) Socioeconomic issues and constraints in the bamboo and rattan sectors: INBAR’s assessment. INBAR Working Paper No. 23. International Network for Bamboo and Rattan, Beijing

    Google Scholar 

  50. Ingram V, Tieguhong JC, Nkamgnia EM, Eyebe JP, Ngawe M (2010) Bamboo production to consumption system. Cameroon, CIFOR (Center for International Forestry Research), Bogor, Indonesia

    Google Scholar 

  51. Jackson RB, Le Quéré C, Andrew RM, Canadell JG, Peters GP, Roy J, Wu L (2017) Warning signs for stabilizing global CO2 emissions. Environ Res Lett 12(11):110202. https://doi.org/10.1088/1748-9326/aa9662

    CrossRef  CAS  Google Scholar 

  52. Kaushal R, Tewari S, Banik RL, Thapliyal SD, Singh I, Reza S, Durai J (2020) Root distribution and soil properties under 12-year old sympodial bamboo plantation in Central Himalayan Tarai Region, India. Agrofor Syst 94(3):917–932. https://doi.org/10.1007/s10457-019-00459-4

    CrossRef  Google Scholar 

  53. Kaushal R, Tewari S, Thapliyal SD, Kumar A, Roy T, Islam S, Lepcha STS, Durai J (2021) Build-up of labile, non-labile carbon fractions under fourteen-year-old bamboo plantations in the Himalayan foothills. Heliyon 7(8):e07850. https://doi.org/10.1016/j.heliyon.2021.e07850

    CrossRef  CAS  Google Scholar 

  54. Koide CL, Collier AC, Berry MJ, Panee J (2011) The effect of bamboo extract on hepatic biotransforming enzymes–findings from an obese–diabetic mouse model. J Ethnopharmacol 133(1):37–45. https://doi.org/10.1016/j.jep.2010.08.062

    CrossRef  Google Scholar 

  55. Kuehl Y (2015) Resources, yield, and volume of bamboos. Bamboo 91–111. https://doi.org/10.1007/978-3-319-14133-6_4

  56. Kwame AO, Elizabeth AO, Haruna A, Sarah P (2020) Bamboo policy integration analysis, Ghana (No. 83). INBAR working paper

    Google Scholar 

  57. Lacerda AEB, Kellermann B (2019) What is the long-term effect of bamboo dominance on adult trees in the Araucaria Forest? A comparative analysis between two successional stages in southern Brazil. Diversity 11(9):165

    CrossRef  Google Scholar 

  58. Laestadius L, Buckingham K, Maginnis S, Saint-Laurent C (2015) Before Bonn and beyond: The history and future of forest landscape restoration. Unasylva 66(245):11

    Google Scholar 

  59. Leblond JP, Pham TH (2014) Recent forest expansion in Thailand: a methodological artifact? J Land Use Sci 9(2):211–241

    CrossRef  Google Scholar 

  60. Lee B, Rhee H, Kim S, Lee JW, Koo S, Lee SJ, Alounsavath P, Kim YS (2021) Assessing sustainable bamboo-based income generation using a value chain approach: case study of Nongboua village in Lao PDR. Forests 12(2):153. https://doi.org/10.3390/f12020153

    CrossRef  Google Scholar 

  61. Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349(6250):827–832

    CrossRef  CAS  Google Scholar 

  62. Li LE, Lin YJ, Yen TM (2016) Using allometric models to predict the aboveground biomass of thorny bamboo (Bambusa stenostachya) and estimate its carbon storage. Taiwan J For Sci 31(1):37–47

    Google Scholar 

  63. Liese W, Welling J, Tang TKH (2015) Utilization of bamboo. In: Liese W, Kohl M (eds) Bamboo: Tropical Forestry, vol 10, pp 299–346. https://doi.org/10.1007/978-3-319-14133-6_10

  64. Lobovikov M, Paudel S, Piazza M, Ren H, Wu J (2007) World bamboo resources: a thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Non-Wood Forest Products 18. INBAR-FAO. http://www.fao.org/3/a-a1243e.pdf

  65. Lyu B, Zeng C, Deng S, Liu S, Jiang M, Li N, Wei L, Yu Y, Chen Q (2019) Bamboo forest therapy contributes to the regulation of psychological responses. J For Res 24(1):61–70. https://doi.org/10.1080/13416979.2018.1538492

    CrossRef  CAS  Google Scholar 

  66. Maginnis S, Jackson W (2003) The role of planted forests in forest landscape restoration. In Proceedings of the UNFF intersessional experts meeting on the role of planted forests in sustainable forest management, pp 87–99

    Google Scholar 

  67. Malcolm KD, McShea WJ, Garshelis DL, Luo SJ, Van Deelen TR, Liu F, Li S, Miao L, Wang D, Brown JL (2014) Increased stress in Asiatic black bears relates to food limitation, crop raiding, and foraging beyond nature reserve boundaries in China. Glob Ecol Conserv 2:267–276. https://doi.org/10.1016/j.gecco.2014.09.010

    CrossRef  Google Scholar 

  68. Majumder AF, Das AK, Nath AJ (2019) Biomass storage and carbon sequestration in priority bamboo species in relation to village physiography. Int J Ecol Environ Sci 45(1):85–95

    Google Scholar 

  69. McGuire D (2014) FAO’ s forest and landscape restoration mechanism. In Chavez-Tafur J, Roderick zagt J (eds) Towards productive landscapes. Tropenbos International, Wageningen, Netherlands

    Google Scholar 

  70. Mera FAT, Xu C (2014) Plantation management and bamboo resource economics in China. Cienc Tecn 7(1):1–12

    Google Scholar 

  71. Messinger J, DeWitt S (2015) Bonn challenge on track to meet land restoration goal by 2020

    Google Scholar 

  72. Minnemeyer S, Laestadius L, Sizer N, Saint-laurent C, Potapov P (2011) A world of opportunity [brochure]. In: The global partnership on forest landscape restoration. World Resources Institute, South Dakota State University and IUCN. http://pdf.wri.org/world_of_opportunity_brochure_2011-09.pdf

  73. Mishra G, Giri K, Panday S, Kumar R, Bisht NS (2014) Bamboo: potential resource for eco-restoration of degraded lands. J Biol Earth Sci 4(2):B130-B136. www.journals.tmkarpinski.com/index.php/jbes

  74. Montti L, Campanello PI, Gatti MG, Blundo C, Austin AT, Sala OE, Goldstein G (2011) Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones, Argentia. For Ecol Manag 262(8):1360–1369. https://doi.org/10.1016/j.foreco.2011.06.029

    CrossRef  Google Scholar 

  75. Mulatu Y, Fetene M (2013) Stand structure, growth and biomass of Arundinaria alpina (highland bamboo) along topographic gradient in the Choke Mountain, northwestern Ethiopia. Ethiop J Biol Sci 12(1):1–23

    Google Scholar 

  76. Mullan D (2013) Soil erosion under the impacts of future climate change: assessing the statistical significance of future changes and the potential on-site and off-site problems. CATENA 109:234–246

    CrossRef  Google Scholar 

  77. Nath JA, Lal R, Das AK (2015) Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system. Sci Total Environ 521:372–379. https://doi.org/10.1016/j.scitotenv.2015.03.059

    CrossRef  CAS  Google Scholar 

  78. Nath AJ, Sileshi GW, Laskar SY, Pathak K, Reang D, Nath A, Das AK (2021) Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s Nationally Determined Contribution. J Clean Prod 281:124831. https://doi.org/10.1016/j.jclepro.2020.124831

    CrossRef  CAS  Google Scholar 

  79. Nath AJ, Das AK (2012) Ecological implications of village bamboo as global climate change mitigation strategy: a case study in Barak Valley, Assam, North East India. Int J Clim Change Strat Manag

    Google Scholar 

  80. Nath AJ, Brahma B, Sileshi GW, Das AK (2018) Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Sci Total Environ 624:908–917. https://doi.org/10.1016/j.scitotenv.2017.12.199

    CrossRef  CAS  Google Scholar 

  81. Nath AJ, Das G, Das AK (2009) Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenerg 33(9):1188–1196

    CrossRef  Google Scholar 

  82. Nath AJ, Lal R, Das AK (2015) Managing woody bamboos for carbon farming and carbon trading. Glob Ecol Conserv 3:654–663. https://doi.org/10.1016/j.gecco.2015.03.002

  83. Nath AJ, Sileshi GW, Das AK (2018) Bamboo based family forests offer opportunities for biomass production and carbon farming in North East India. Land Use Policy 75:191–200. https://doi.org/10.1016/j.landusepol.2018.03.041

    CrossRef  Google Scholar 

  84. Nath AJ, Sileshi GW, Das AK (2020) Bamboo: climate change adaptation and mitigation. CRC Press

    Google Scholar 

  85. Nfornkah BN, Chimi DC, Gadinga WF, Kaam R (2020) Bamboo policy integration in Cameroon. Policy in Brief, INBAR & FIDA Working paper, p 34. https://bit.ly/3myskYU

  86. Nfornkah BN, Kaam R, Tchamba M, Zapfack L, Chimi C, Tanougong A (2020) Assessing the spatial distribution of bamboo species using remote sensing in Cameroon. J Ecol Nat Environ 12(4):172–183

    Google Scholar 

  87. Nfornkah BN, Kaam R, Martin T, Louis Z, Cedric CD, Forje GW, Armand Delanot T, Mélanie Rosine T, Jean Baurel A, Loic T, Guy Herman ZT (2020) Culm allometry and carbon storage capacity of Bambusa vulgaris Schrad. ex JC WendL. in the tropical evergreen rain forest of Cameroon. J Sustain For 40(6):622–638

    Google Scholar 

  88. Nfornkah BN, Kaam R, Zapfack L, Tchamba M, Chimi DC (2020) Bamboo diversity and carbon stocks of dominant species in different agro-ecological zones in Cameroon. Afr J Environ Sci Technol 14(10):290–300

    CrossRef  Google Scholar 

  89. Nfornkah BN, Kaam R, Zapfack L, Tchamba M, Djomo CC, Forje WG, Nkondjoua Dolanot AT, Tsewoue MR, Arnold JN, Zambou JCG, Okala S (2020c) Spatial distribution and carbon storage of a native bamboo species in the high Guinea savannah of Cameroon: Oxytenanthera abyssinica (A. Rich.) Munro. Int J Environ Stud 78(3):504–516

    Google Scholar 

  90. Nigatu A, Wondie M, Alemu A, Gebeyehu D, Workagegnehu H (2020) Productivity of highland bamboo (Yushania alpina) across different plantation niches in West Amhara, Ethopia. For Sci Technol 16(3):116–122

    Google Scholar 

  91. Obiri BD, Oteng-Amoako AA (2007) Towards a sustainable development of the bamboo industry in Ghana

    Google Scholar 

  92. Ongugo PO, Sigu,GO, Kariuki JG, Luvanda AM, Kigomo BN (2000) Production-to-consumption systems: a case study of the bamboo sector in Kenya. KEFRI/INBAR Project working paper (27)

    Google Scholar 

  93. Palm C, Sanchez P, Ahamed S, Awiti A (2007) Soils: a contemporary perspective. Annu Rev Environ Resour 32:99

    CrossRef  Google Scholar 

  94. Partey ST, Sarfo DA, Frith O, Kwaku M, Thevathasan NV (2017) Potentials of bamboo-based agroforestry for sustainable development in Sub-Saharan Africa: a review. Agric Res 6(1):22–32. https://doi.org/10.1007/s40003-017-0244-z

    CrossRef  Google Scholar 

  95. Patra S, Kaushal R, Singh D, Kumar R, Gadedjisso-Tossou A, Durai J (2022) Surface soil hydraulic conductivity and macro-pore characteristics as affected by four bamboo species in North-Western Himalaya, India. Ecohydrol Hydrobiol 22(1):188–196. https://doi.org/10.1016/j.ecohyd.2021.08.012

    CrossRef  Google Scholar 

  96. Paudel P, Kafle G (2012) Assessment and prioritization of community soil and water conservation measures for adaptation to climatic stresses in Makawanpur district of Nepal. J Wetl Ecol 6:44–51

    CrossRef  Google Scholar 

  97. Paudyal K, Adhikari S, Sharma S, Samsudin YB, Paudyal BR, Bhandari A, Birhane E, Darcha G, Trinh TL, Baral H (2019) Framework for assessing ecosystem services from bamboo forests: lessons from Asia and Africa. Working Paper 255. p 42. https://doi.org/10.17528/cifor/007433

  98. Paudyal K, Yanxia L, Long TT, Adhikari S, Lama S, Bhatta KP (2022) Ecosystem services from Bamboo forests: key findings, lessons learnt and call for actions from global synthesis. INBAR Working Paper

    Google Scholar 

  99. Peprah T, Essien C, Owusu-Afriyie K, Foli EG, Govina J, Oteng-Amoako AA (2014) Exploring the use of bamboo for accelerated reclamation of degraded mined sites in Ghana

    Google Scholar 

  100. Phimmachanh S, Ying Z, Beckline M (2015) Bamboo resources utilization: a potential source of income to support rural livelihoods. Appl Ecol Environ Sci 3(6):176–183. https://doi.org/10.12691/AEES-3-6-3

  101. Puyravaud JP, Davidar P, Laurance WF (2010) Cryptic destruction of India’s native forests. Conserv Lett 3(6):390–394

    CrossRef  Google Scholar 

  102. Qin H, Niu L, Wu Q, Chen J, Li Y, Liang C, Xu Q, Fuhrmann JJ, Shen Y (2017) Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant Soil 420(1):407–421. https://doi.org/10.1007/s11104-017-3415-6

    CrossRef  CAS  Google Scholar 

  103. Rebelo C, Buckingham K (2015) El bambú: oportunidades para la restauración de bosques y paisajes. Día internacional de los bosques–21 de marzo 66(3):91

    Google Scholar 

  104. Reed J, van Vianen J, Barlow J, Sunderland T (2017) Have integrated landscape approaches reconciled societal and environmental issues in the tropics? Land Use Policy 63:481–492

    CrossRef  Google Scholar 

  105. Restore our future: bonn challenge (2022) About the challenge. https://www.bonnchallenge.org/about

  106. Restore our future (2022) Africa & the bonn challenge: a demonstration of leadership. https://www.bonnchallenge.org/resources/africa-bonn-challenge-demonstration-leadership

  107. Ruth MV, Marie-Louise A, Neba NB, Rene K (2022) Status of bamboo species (Poaceae)(Kunth) in Menoua, agroecological zone 3 of Cameroon. Int J Biodiv Conserv 14(3):115–127

    CrossRef  Google Scholar 

  108. Sabogal C, Besacier C, McGuire D (2015) Forest and landscape restoration: concepts, approaches and challenges for implementation. Unasylva 66(245):3

    Google Scholar 

  109. Saigal S, Kumar C, Chaturvedi R (2016) Nadi Bachao Samriddhi Lao–A forest landscape restoration initiative in Harda district, Madhya Pradesh, India. World Dev Perspect 4:1–4

    CrossRef  Google Scholar 

  110. Scherr SJ (1999) Soil degradation: a threat to developing-country food security by 2020? vol 27. International Food Policy Research Institute

    Google Scholar 

  111. Schroder S (2021) Bamboo facts: bamboo produces water for rivers and streams. https://www.guaduabamboo.com/blog/bamboo-produces-water-for-riversand-streams

  112. Schroder S (2021) Environmental impact of Guadua Bamboo [online]. https://www.guaduabamboo.com/blog/environmental-impact-of-guadua-bamboo

  113. Shanmughavel P, Peddappaiah RS, Muthukumar T (2001) Biomass production in an age series of Bambusa bambos plantations. Biomass Bioenerg 20(2):113–117

    CrossRef  Google Scholar 

  114. Sharma YML (1987) Inventory and resources of bamboos. In: Recent research on Bamboos, pp 14–27

    Google Scholar 

  115. Sharma R, Wahono J, Baral H (2018) Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10(12):4367. https://doi.org/10.3390/u10124367

    CrossRef  Google Scholar 

  116. Sharma R, Martins N, Kuca K, Chaudhary A, Kabra A, Rao MM, Prajapati PK (2019) Chyawanprash: a traditional Indian bioactive health supplement. Biomolecules 9(5):161. https://doi.org/10.3390/biom9050161

  117. Sheil D, Ducey M, Ssali F, Ngubwagye JM, Van Heist M, Ezuma P (2012) Bamboo for people, Mountain gorillas, and golden monkeys: evaluating harvest and conservation trade-offs and synergies in the Virunga Volcanoes. For Ecol Manage 267:163–171

    CrossRef  Google Scholar 

  118. Shen M, Xie Z, Jia M, Li A, Han H, Wang T, Zhang L (2019) Effect of bamboo leaf extract on antioxidant status and cholesterol metabolism in broiler chickens. Animals 9(9):699. https://doi.org/10.3390/ani9090699

    CrossRef  Google Scholar 

  119. Sileshi GW, Nath AJ (2017) Carbon farming with bamboos in Africa: a call for action. Working Paper. https://doi.org/10.13140/RG.2.2.34366.89926

  120. Singh AK, Kala S, Dubey SK, Rao BK, Gaur ML, Mohapatra KP, Prasad B (2014) Evaluation of bamboo based conservation measures for rehabilitation of degraded Yamuna ravines. Indian J Soil Conserv 42(1):80–84

    Google Scholar 

  121. Singh AK, Kala S, Dubey SK, Rao BK, Mishra PK (2015) Bamboo based resource conservation–a viable technology for reclamation of Yamuna ravine. Technical bulletin No

    Google Scholar 

  122. Sofiah S, Setiadi D, Widyatmoko D (2018) The influence of edaphic factors on bamboo population in Mount Baung Natural Tourist Park, Pasuruan, East Java, Indonesia. Int J Trop Drylands 2(1):12–17. https://doi.org/10.13057/tropdrylands/t020103

  123. Sohel MSI, Alamgir M, Akhter S, Rahman M (2015) Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land Use Policy 49:142–151. https://doi.org/10.1016/j.landusepol.2015.07.011

    CrossRef  Google Scholar 

  124. Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19(NA):418–428. https://doi.org/10.1139/a11-015

  125. Song QN, Lu H, Liu J, Yang J, Yang GY, Yang QP (2017) Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci Rep 7(1):1–10

    Google Scholar 

  126. Stanturf JA, Kant P, Lillesø JPB, Mansourian S, Kleine M, Graudal L, Madsen P (2015) Forest landscape restoration as a key component of climate change mitigation and adaptation, vol 34, p 34. International Union of Forest Research Organizations (IUFRO), Vienna, Austria

    Google Scholar 

  127. Sujarwo W (2018) Bamboo resources, cultural values, and ex-situ conservation in Bali, Indonesia. Reinwardtia 17(1):65–75. https://doi.org/10.14203/reinwardtia.v17i1.3569

  128. Sun J, Ren J, Hu X, Hou Y, Yang Y (2021) Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed Pharmacother 142:111977. https://doi.org/10.1016/j.biopha.2021.111977

    CrossRef  CAS  Google Scholar 

  129. Tardio G, Mickovski SB, Rauch HP, Fernandes JP, Acharya, MS (2018) The use of bamboo for erosion control and slope stabilization: soil bioengineering works. Bamboo: Curr Fut Prosp 105. https://doi.org/10.5772/intechopen.75626

  130. Terefe R, Jian L, Kunyong Y (2019) Role of bamboo forest for mitigation and adaptation to climate change challenges in China. Reproduction 2(3):4

    Google Scholar 

  131. Tian G, Justicia R, Coleman DC, Carroll CR (2007) Assessment of soil and plant carbon levels in two ecosystems (woody bamboo and pasture) in montane Ecuador. Soil Sci 172(6):459–468

    CrossRef  CAS  Google Scholar 

  132. UNCCD (2020) Great green wall initiative. https://www.unccd.int/our-work/ggwi

  133. University of Tsinghua and INBAR (2018) Remote sensing-based regional bamboo resource assessment report of Madagascar. Tsinghua University of China

    Google Scholar 

  134. van Breugel M, Hall JS, Craven D, Bailon M, Hernandez A, Abbene M, van Breugel P (2013) Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLoS One 8(12):e82433

    CrossRef  Google Scholar 

  135. Vorontsova MS, Clark LG, Dransfield J, Govaerts R, Baker WJ (2016) World checklist of bamboos and rattans

    Google Scholar 

  136. Wang Y, Chen J, Wang D, Ye F, He Y, Hu Z, Zhao G (2020) A systematic review on the composition, storage, processing of bamboo shoots: focusing the nutritional and functional benefits. J Funct Foods 71:104015. https://doi.org/10.1016/j.jff.2020.104015

    CrossRef  CAS  Google Scholar 

  137. Will AW, Harrington I, Iyer V, Stein N, Arakwiye B, Muhizi PG, Minnick A, Gant A, DeWitt S How we funded Africa’s top 100 land restoration projects and enterprises. https://www.wri.org/update/terrafund-afr100-selection-process

  138. Wimbush SH (1947) The African alpine bamboo. East Afric Agric J 13(1):56–60. https://doi.org/10.1080/03670074.1947.11664583

    CrossRef  Google Scholar 

  139. World Agroforestry Centre (2020) Could bamboo-based agroforestry systems be the latest kind of climate-smart agriculture? https://www.worldagroforestry.org/blog/2020/05/18/could-bamboo-based-agroforestrysystems-be-latest-kind-climate-smart-agriculture

  140. World Bank (2021) Nesting of REDD+initiatives: manual for policy makers. World Bank

    Google Scholar 

  141. WRI (2022) African forest landscape restoration initiative (AFR100): restoring 100 million hectares of deforested and degraded land in Africa by 2030. https://www.wri.org/initiatives/african-forest-landscape-restoration-initiative-afr100

  142. WRI (2022) Global restoration initiative. https://www.wri.org/initiatives/global-restoration-initiative

  143. Wu J, Zhong Y, Deng J (2019) Assessing and mapping forest landscape quality in China. Forests 10(8):684. https://doi.org/10.3390/f10080684

    CrossRef  Google Scholar 

  144. Yen TM (2016) Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot Stud 57(1):1–9. https://doi.org/10.1186/s40529-016-0126-x

    CrossRef  Google Scholar 

  145. Yeromiyan T (2021) The culture and history of Chinese bamboo. The Chinese Language Institute

    Google Scholar 

  146. Shiau YJ, Wang HC, Chen TH, Jien SH, Tian G, Chiu CY (2017) Improvement in the biochemical and chemical properties of badland soils by thorny bamboo. Sci Rep 7(1):1–10. https://doi.org/10.1038/srep40561

    CrossRef  CAS  Google Scholar 

  147. Youkhana AH, Ogoshi RM, Kiniry JR, Meki MN, Nakahata MH, Crow SE (2017) Allometric models for predicting aboveground biomass and carbon stock of tropical perennial C4 grasses in Hawaii. Front Plant Sci 8:650

    CrossRef  Google Scholar 

  148. Yourmila K, Bhardwaj DR (2017) Effect of various bamboo species on soil nutrients and growth parameters in Mid hills of HP India. Int J Chem Stud 5(4):19–24

    Google Scholar 

  149. Yu CPS, Hsieh H (2020) Beyond restorative benefits: evaluating the effect of forest therapy on creativity. Urban For Urban Green 51:126670. https://doi.org/10.1016/j.ufug.2020.126670

    CrossRef  Google Scholar 

  150. Yuen JQ, Fung T, Ziegler AD (2017) Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For Ecol Manage 393:113–138

    CrossRef  Google Scholar 

  151. Zamorano-Elgueta C, Benayas JMR, Cayuela L, Hantson S, Armenteras D (2015) Native forest replacement by exotic plantations in southern Chile (1985–2011) and partial compensation by natural regeneration. For Ecol Manage 345:10–20

    CrossRef  Google Scholar 

  152. Zhang H, Zhuang S, Sun B, Ji H, Li C, Zhou S (2014) Estimation of biomass and carbon storage of moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter–age bivariate distribution model. For Int J For Res 87(5):674–682

    Google Scholar 

  153. Zhao Y, Feng D, Jayaraman D, Belay D, Sebrala H, Ngugi J, Maina E, Akombo R, Otuoma J, Mutyaba J, Kissa S (2018) Bamboo mapping of Ethiopia, Kenya and Uganda for the year 2016 using multi-temporal Landsat imagery. Int J Appl Earth Obs Geoinf 66:116–125

    Google Scholar 

  154. Zhou B, Mao-Yi Y, Jin-Zhong X, Xiao-Sheng Y, LI C (2005) Ecological functions of bamboo forest: Research and Application. J For Res 16(2):143–147. https://doi.org/10.1007/BF02857909

Download references

Acknowledgements

We appreciate the International Bamboo and Rattan Organization for contributing some of the literature used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnabas Neba Nfornkah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nfornkah, B.N., Nath, A.J., Kaam, R., Chimi, C.D., Mezafack, K.L. (2023). Bamboo-Based Forest Landscape Restoration: Practical Lessons and Initiatives to Upscale in Africa. In: Palombini, F.L., Nogueira, F.M. (eds) Bamboo Science and Technology. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-99-0015-2_12

Download citation