Skip to main content

Memristor-Based Neuromorphic Computing and Artificial Neural Networks for Computer Vison and AI—Applications

  • Chapter
  • First Online:
Biomedical Imaging

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 41 Accesses

Abstract

The traditional von Neumann architecture seen in digital processors generally suffers from the data transfer rate bottleneck and inefficiency in terms of energy consumption. The objective is to emulate the computational functions of the human brain, with special attention to attaining high compactness and energy efficiency. On the way to achieving this goal, there are a number of formidable obstacles. Because the biological brain uses extremely low power (approx. 40–60 W), high-density neural networks. Therefore new device concepts that combine low power consumption, scalability, and advanced computing functionality are needed. In this article, we will try to summarize the memristive-based neuromorphic computing. Here, the physics and functioning of CMOS-based floating-gate memory devices in artificial neural networks are explored, and then different memristive concepts relevant to deep neural network and spiking neural network architectures are reviewed and discussed. The final section discusses the main technological obstacles and potential directions for neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Ielmini, H-S.P.J.N.E. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018)

    Google Scholar 

  2. A.J.J.J.O.A.P. Chen, Beyond-CMOS roadmap—from Boolean logic to neuro-inspired computing. Jpn. J. Appl. Phys. 61, SM1003 (2022)

    Google Scholar 

  3. M.R. Azghadi, B. Linares-Barranco, D. Abbott, P.H.J.I.T.O.B.C. Leong, and systems: A hybrid CMOS-memristor neuromorphic synapse. IEEE Trans. Biomed. Circuits Syst. 11, 434–445 (2016)

    Google Scholar 

  4. W. Olin-Ammentorp, N.J.S.P. Cady, Biologically-inspired neuromorphic computing. 102, 261–276 (2019)

    Google Scholar 

  5. M.P. Fok, D. Rosenbluth, K. Kravtsov, P.R.J.I.S.P.M. Prucnal, Lightwave neuromorphic signal processing [in the spotlight]. 27, 160–158 (2010)

    Google Scholar 

  6. F. Zenke et al., Visualizing a joint future of neuroscience and neuromorphic engineering. 109, 571–575 (2021)

    Google Scholar 

  7. S. Kim, S. Choi, W.J.A.N. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8, 2369–2376 (2014)

    Google Scholar 

  8. S.M. Hus et al., Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol., 16, 58–62 (2021)

    Google Scholar 

  9. Y. Yang, W.J.N. Lu, Nanoscale resistive switching devices: mechanisms and modeling. 5, 10076–10092 (2013)

    Google Scholar 

  10. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S.J.N. Williams, The missing memristor found. 453, 80–83 (2008)

    Google Scholar 

  11. X. Xiao et al., Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications. Adv. Mater. Technologies. 5, 1900914 (2020)

    Google Scholar 

  12. P. Krzysteczko, J. Münchenberger, M. Schäfers, G. Reiss, A.J.A.M. Thomas, The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. 24, 762–766 (2012)

    Google Scholar 

  13. S. Hu et al., SPICE study of STDP characteristics in a drift and diffusive memristor-based synapse for neuromorphic computing. 10, 6381–6392 (2022)

    Google Scholar 

  14. H. Bian, Y.Y. Goh, Y. Liu, H. Ling, L. Xie, X.J.A.M. Liu, Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. 33, 2006469 (2021)

    Google Scholar 

  15. M. Patel, J. Gosai, N. Chaudhari, A. Solanki, Hybrid perovskite-based memristor devices. in Information systems management (IntechOpen, 2023)

    Google Scholar 

  16. M. Patel, J. Gosai, A. Lokhandwala, A.J.A.A.E.M. Solanki, Slow migration-controlled resistive switching in stable dion–jacobson hybrid perovskites for flexible memristive applications. (2024)

    Google Scholar 

  17. M. Patel, D.D. Kumbhar, J. Gosai, M.R. Sekhar, A.T. Mallajosyula, A.J.A.E.M. Solanki, Hybrid perovskite-based flexible and stable memristor by complete solution process for neuromorphic computing. 9, 2200908 (2023)

    Google Scholar 

  18. M. Patel et al., MXenes: promising 2D memristor materials for neuromorphic computing components. (2022)

    Google Scholar 

  19. J. Wang et al., Handwritten-digit recognition by hybrid convolutional neural network based on HfO2 memristive spiking-neuron. Scientific Reports 8, 12546 (2018)

    Google Scholar 

  20. Q. Duan et al., Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. 11, 3399 (2020)

    Google Scholar 

  21. X. Ji, Z. Dong, C.S. Lai, D.J.I.C.M. Qi, A brain-inspired in-memory computing system for neuronal communication via memristive circuits. 60, 100–106 (2022)

    Google Scholar 

  22. K. Liao et al., Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. 13, 32606–32623 (2021)

    Google Scholar 

  23. V. Vakharia, M. Shah, V. Suthar, V.K. Patel, A.J.P.S. Solanki, Hybrid perovskites thin films morphology identification by adapting multiscale-SinGAN architecture, heat transfer search optimized feature selection and machine learning algorithms. 98, 025203 (2023)

    Google Scholar 

  24. S. Agatonovic-Kustrin, R.J.J.O.P. Beresford, Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000)

    Google Scholar 

  25. J.V.J.J.O.C.E. Tu, Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. 49, 1225–1231 (1996)

    Google Scholar 

  26. S.M. Siniscalchi, T. Svendsen, C.-H.J.N. Lee, An artificial neural network approach to automatic speech processing. 140, 326–338 (2014)

    Google Scholar 

  27. I. Litvan et al., What can artificial neural networks teach us about neurodegenerative disorders with extrapyramidal features? 119, 831–839 (1996)

    Google Scholar 

  28. S.H. Reshak, Drugs designing using artificial intelligence based pharmaceutical systems, in 2022 International Conference for Advancement in Technology (ICONAT) (IEEE, 2022), pp. 1–4

    Google Scholar 

  29. L.A. Camuñas-Mesa, B. Linares-Barranco, T.J.M. Serrano-Gotarredona, Neuromorphic spiking neural networks and their memristor-CMOS hardware implementations. 12, 2745 (2019)

    Google Scholar 

  30. L. Shen, Z. Lin, Q. Huang, Relay backpropagation for effective learning of deep convolutional neural networks, in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14 (Springer, 2016), pp.467–482

    Chapter  Google Scholar 

  31. T.P. Lillicrap, A. Santoro, L. Marris, C.J. Akerman, G.J.N.R.N. Hinton, Backpropagation and the brain. 21, 335–346 (2020)

    Google Scholar 

  32. S.R. Kulkarni, A.V. Babu, B. Rajendran, Spiking neural networks—Algorithms, hardware implementations and applications. in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, 2017), pp. 426–431

    Google Scholar 

  33. B. Cramer, Y. Stradmann, J. Schemmel, F.J.I.T.O.N.N. Zenke, The heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 2744–2757 (2020)

    Google Scholar 

  34. S.B. Furber, F. Galluppi, S. Temple, L.A.J.P.O.T.I. Plana, The spinnaker project. 102, 652–665 (2014)

    Google Scholar 

  35. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B.J.N. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. 521, 61–64 (2015)

    Google Scholar 

  36. P. Yao et al., Fully hardware-implemented memristor convolutional neural network. 577, 641–646 (2020)

    Google Scholar 

  37. C. Zhang et al., Bioinspired artificial sensory nerve based on nafion memristor. 29, 1808783 (2019)

    Google Scholar 

  38. W-Z. Hu et al., Differentiation of neoplastic and non-neoplastic intracranial enhancement lesions using three-dimensional pseudo-continuous arterial spin labeling. Front. Neurosci. 16, 812997. https://doi.org/10.3389/fnins.2022.812997

  39. J. Chen et al., An efficient memristor-based circuit implementation of squeeze-and-excitation fully convolutional neural networks. 33, 1779–1790 (2021)

    Google Scholar 

  40. F. Yu, X. Kong, A.A.M. Mokbel, W. Yao, S.J.I.T.O.C. Cai, S.I.E, Briefs: Complex dynamics, hardware implementation and image encryption application of multiscroll memeristive Hopfield neural network with a novel local active memeristor. 70, 326–330 (2022)

    Google Scholar 

  41. Q. Lai, Z. Wan, H. Zhang, G.J.I.T.O.N.N. Chen, L., Systems: Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption. (2022)

    Google Scholar 

  42. A. Lebedeva et al., Development a cross-loop during adaptive stimulation of hippocampal neural networks by an artificial neural network. in 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN) (IEEE, 2022), pp. 82–85

    Google Scholar 

  43. L. Wang et al., Artificial synapses based on multiterminal memtransistors for neuromorphic application. 29, 1901106 (2019)

    Google Scholar 

  44. V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X.J.S.C.T.S. Wang, A novel memristive neural network with hidden attractors and its circuitry implementation. 59, 358–363 (2016)

    Google Scholar 

  45. M.T. Maurano et al., Systematic localization of common disease-associated variation in regulatory DNA. 337, 1190–1195 (2012)

    Google Scholar 

  46. S.A. Lambert, G. Abraham, M.J.H.M.G. Inouye, Towards clinical utility of polygenic risk scores. Hum. Mol. Genet., 28, R133–R142 (2019)

    Google Scholar 

  47. R.M. Poses, R.D. Cebul, M.Collins, S.S.J.A.O.I.M. Fager, The importance of disease prevalence in transporting clinical prediction rules: the case of streptococcal pharyngitis. Ann. Intern. Med. 105, 586–591 (1986)

    Google Scholar 

  48. J.J.S. Drews, Drug discovery: a historical perspective. Science 287, 1960–1964 (2000)

    Google Scholar 

  49. H.S. Chan, H. Shan, T. Dahoun, H. Vogel, S.J.T.I.P.S. Yuan, Advancing drug discovery via artificial intelligence. 40, 592–604 (2019)

    Google Scholar 

  50. C.S.J.D.D.T. Fishburn, Translational research: the changing landscape of drug discovery. Drug Discov. Today 18, 487–494 (2013)

    Google Scholar 

  51. R.C. Mohs, N.H.J.A.S. Greig, Drug discovery and development: Role of basic biological research. Transl. Res. & Clin. Interv., 3, 651–657 (2017)

    Google Scholar 

  52. A.F.J.N.N. Arnsten, Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 18, 1376–1385 (2015)

    Google Scholar 

  53. C.-Y. Wee et al., Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59, 2045–2056 (2012)

    Google Scholar 

  54. C. Iadecola et al., Vascular cognitive impairment and dementia: JACC scientific expert panel. 73, 3326–3344 (2019)

    Google Scholar 

  55. P.T. Francis, N.R. Sims, A.W. Procter, D.M.J.J.O.N. Bowen, Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J. Neurochem. 60, 1589–1604 (1993)

    Google Scholar 

  56. J. Broekens, M. Heerink, H.J.G. Rosendal, Assistive social robots in elderly care: a review. 8, 94–103 (2009)

    Google Scholar 

  57. A. Sorrentino et al., Personalizing care through robotic assistance and clinical supervision. Front. Robot. AI. 9, 883814 (2022)

    Google Scholar 

  58. M.-F.R. Lee, F.-H.S. Chiu, C.W. de Silva, C-Y.A.J.I.J.O.F.S. Shih, Intelligent navigation and micro-spectrometer content inspection system for a homecare mobile robot. 16, (2014)

    Google Scholar 

  59. M.J.R. Kassler, Robotics for health care: a review of the literature. 11, 495-516 (1993)

    Google Scholar 

  60. R.D. Singh, A. Mittal, R.K.J.M.T. Bhatia, Applications: 3D convolutional neural network for object recognition: a review. Multimed. Tools Appl. 78, 15951–15995 (2019)

    Google Scholar 

  61. M. Jain et al., Insights into synaptic functionality and resistive switching in lead iodide flexible memristor devices. (2024)

    Google Scholar 

  62. A. Ali, S.Z. Kazmi, G. Shahzadi, M. Rashid, M.U. Ahsan, Demystifying CNN with mathematical insights: A prelude with application to an ai-based sustainable solution for diabetic retinopathy diagnosis. (2023)

    Google Scholar 

  63. Y. Gao, M.A. Maraci, J.A. Noble, Describing ultrasound video content using deep convolutional neural networks. in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), (IEEE, 2016), pp. 787–790

    Google Scholar 

  64. S. Moro, P. Rita, P. Ramos, J.J.J.O.H. Esmerado, Technology: Analysing recent augmented and virtual reality developments in tourism. J. Hosp. Tour. Technol. 10, 571–586 (2019)

    Google Scholar 

  65. J.J. Kim, Y. Wang, H. Wang, S. Lee, T. Yokota, T.J.A.F.M. Someya, Skin electronics: next‐generation device platform for virtual and augmented reality. Adv. Funct. Mater. 31, 2009602 (2021)

    Google Scholar 

  66. K. Yin, Z. He, J. Xiong, J. Zou, K. Li, and S.-T.J.J.O.P.P. Wu, Virtual reality and augmented reality displays: advances and future perspectives. J. Phys.: Photonics, 3, 022010 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohendra Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, P., Patel, M., Solanki, A., Roy, M. (2024). Memristor-Based Neuromorphic Computing and Artificial Neural Networks for Computer Vison and AI—Applications. In: Gogoi, A., Mazumder, N. (eds) Biomedical Imaging. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-97-5345-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5345-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5344-4

  • Online ISBN: 978-981-97-5345-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics