Skip to main content

Thermal Stress and Nuclear Transport

  • Chapter
  • First Online:
Thermal Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1461))

  • 217 Accesses

Abstract

Nuclear transport is the basis for the biological reaction of eukaryotic cells, as it is essential to coordinate nuclear and cytoplasmic events separated by nuclear envelope. Although we currently understand the basic molecular mechanisms of nuclear transport in detail, many unexplored areas remain. For example, it is believed that the regulations and biological functions of the nuclear transport receptors (NTRs) highlights the significance of the transport pathways in physiological contexts. However, physiological significance of multiple parallel transport pathways consisting of more than 20 NTRs is still poorly understood, because our knowledge of each pathway, regarding their substrate information or how they are differently regulated, is still limited. In this report, we describe studies showing how nuclear transport systems in general are affected by temperature rises, namely, thermal stress or heat stress. We will then focus on Importin α family members and unique transport factor Hikeshi, because these two NTRs are affected in heat stress. Our present review will provide an additional view to point out the importance of diversity of the nuclear transport pathways in eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam EJ, Adam SA (1994) Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope. J Cell Biol 125:547–555

    Google Scholar 

  • Adam SA, Gerace L (1991) Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 66:837–847

    CAS  PubMed  Google Scholar 

  • Aizawa H, Yamashita T, Kato H, Kimura T, Kwak S (2019) Impaired nucleoporins are present in sporadic amyotrophic lateral sclerosis motor neurons that exhibit mislocalization of the 43-kDa TAR DNA-binding protein. J Clin Neurol 15:62–67

    PubMed  Google Scholar 

  • Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    CAS  PubMed  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    CAS  PubMed  Google Scholar 

  • Baade I, Kehlenbach RH (2019) The cargo spectrum of nuclear transport receptors. Curr Opin Cell Biol 58:1–7

    CAS  PubMed  Google Scholar 

  • Baade I, Spillner C, Schmitt K, Valerius O, Kehlenbach RH (2018) Extensive identification and in-depth validation of importin 13 cargoes. Mol Cell Proteomics 17:1337–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13:2486–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biamonti G, Vourc’h C (2010) Nuclear stress bodies. Cold Spring Harb Perspect Biol 2:a000695

    PubMed  PubMed Central  Google Scholar 

  • Boeynaems S, Bogaert E, Van Damme P, Van Den Bosch L (2016) Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 132:159–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cautain B, Hill R, Pedro N, Link W (2015) Components and regulation of nuclear transport processes. FEBS J 282:445–462

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Paschal BM (2015) Disruption of the Ran system by cysteine oxidation of the nucleotide exchange factor RCC1. Mol Cell Biol 35:566–581

    Google Scholar 

  • Chook TM, Suel KE (2011) Nuclear import by karyopherin- betas: recognition and inhibition. Biochim Biophys Acta 1813:1593–1606

    CAS  PubMed  Google Scholar 

  • Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AA, Fontes MR, Stewart M, Vértessy BG, Forwood JK, Kobe B (2016) Structural biology and regulation of protein import into the nucleus. J Mol Biol 428:2060–2090. Review

    CAS  PubMed  Google Scholar 

  • Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229

    CAS  PubMed  Google Scholar 

  • Clos J, Rabindran S, Wisniewski J, Wu C (1993) Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364:252–255

    CAS  PubMed  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Höhfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3:93–96

    CAS  PubMed  Google Scholar 

  • Cook A et al (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671

    CAS  PubMed  Google Scholar 

  • Cotto J, Fox S, Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci 110:2925–2934

    CAS  PubMed  Google Scholar 

  • Czubryt MP, Austria JA, Pierce GN (2000) Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2. J Cell Biol 148:7–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel S, Bradley G, Longshaw VM, Söti C, Csermely P, Blatch GL (2008) Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. Biochim Biophys Acta 1783:1003–1014

    CAS  PubMed  Google Scholar 

  • Das A, Wei G, Parikh K, Liu D (2015) Selective inhibitors of nuclear export (SINE) in hematological malignancies. Exp Hematol Oncol 4:7

    PubMed  PubMed Central  Google Scholar 

  • Datta S, Snow CJ, Paschal BM (2014) A pathway linking oxidative stress and the Ran GTPase system in progeria. Mol Biol Cell 25:1202–1215

    PubMed  PubMed Central  Google Scholar 

  • Delman M, Avcı ST, Akçok İ, Kanbur T, Erdal E, Çağır A (2019) Antiproliferative activity of (R)-4′-methylklavuzon on hepatocellular carcinoma cells and EpCAM+/CD133+ cancer stem cells via SIRT1 and Exportin-1 (CRM1) inhibition. Eur J Med Chem 180:224–237

    CAS  PubMed  Google Scholar 

  • Dickmanns A, Kehlenbach RH, Fahrenkrog B (2015) Nuclear pore complexes and nucleocytoplasmic transport: from structure to function to disease. Int Rev Cell Mol Biol 320:171–233

    CAS  PubMed  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 12:478–481

    Google Scholar 

  • Edvardson S, Kose S, Jalas C, Fattal-Valevski A, Watanabe A, Ogawa Y, Mamada H, Fedick AM, Ben-Shachar S, Treff NR, Shaag A, Bale S, Gärtner J, Imamoto N, Elpeleg O (2016) Leukoencephalopathy and early death associated with an Ashkenazi-Jewish founder mutation in the Hikeshi gene. J Med Genet 53:132–137

    CAS  PubMed  Google Scholar 

  • Fallini C, Khalil B, Smith CL, Rossoll W (2020) Traffic jam at the nuclear pore: all roads lead to nucleocytoplasmic transport defects in ALS/FTD. Neurobiol Dis 140:104835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Valdivia R, Zhang Y, Pai S, Metzker ML, Schumacher A (2006) l7Rn6 encodes a novel protein required for clara cell function in mouse lung development. Genetics 172:389–399

    PubMed  PubMed Central  Google Scholar 

  • Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483

    CAS  PubMed  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    CAS  PubMed  Google Scholar 

  • Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee KH et al (2015) GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimura K, Suzuki T, Yasuda Y, Murata M, Katahira J, Yoneda Y (2010) Identification of Importin alpha1 as a novel constituent of RNA stress granules. Biochim Biophys Acta 1803:865–871

    CAS  PubMed  Google Scholar 

  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311

    CAS  PubMed  Google Scholar 

  • Fung HY, Chook YM (2014) Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 27:52–61

    CAS  PubMed  Google Scholar 

  • Furuta M, Kose S, Koike M, Shimi T, Hiraoka Y, Yoneda Y, Haraguchi T, Imamoto N (2004) Heat-shock induced nuclear retention and recycling inhibition of Importin alpha. Genes Cells 9:429–441

    CAS  PubMed  Google Scholar 

  • Gaglia G, Rashid R, Yapp C, Joshi GN, Li CG, Lindquist SL, Sarosiek KA, Whitesell L, Sorger PK, Santagata S (2020) HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol 22:151–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasset-Rosa F, Lu S, Yu H, Chen C, Melamed Z, Guo L, Shorter J, Cruz SD, Cleveland DW (2019) Cytoplasmic TDP-43 De-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102:339–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin α: a multipurpose nuclear-transport receptor. Trends Cell Biol 14:505–514

    CAS  PubMed  Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    PubMed  Google Scholar 

  • Görlich D, Prehn S, Laskey RA, Hartmann E (1994) Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79:767–778

    PubMed  Google Scholar 

  • Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5:383–392

    PubMed  Google Scholar 

  • Gothard LQ, Ruffner ME, Woodward JG, Park-Sarge OK, Sarge KD (2003) Lowered temperature set point for activation of the cellular stress response in T-lymphocytes. J Biol Chem 278:9322–9326

    CAS  PubMed  Google Scholar 

  • Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C (2014) Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol 7:85

    PubMed  PubMed Central  Google Scholar 

  • Guo L, Fare CM, Shorter J (2019) Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol 29:308–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hageman J, van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 435:127–142

    CAS  PubMed  Google Scholar 

  • Hattori H, Kaneda T, Lokeshwar B, Laszlo A, Ohtsuka K (1993) A stress-inducible 40 kDa protein (hsp40): purification by modified two-dimensional gel electrophoresis and co-localization with hsc70(p73) in heat-shocked HeLa cells. J Cell Sci 104:629–638

    CAS  PubMed  Google Scholar 

  • Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP (2016) Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. elife 5:e11576

    PubMed  PubMed Central  Google Scholar 

  • Hill R, Cautain B, de Pedro N, Link W (2014) Targeting nucleocytoplasmic transport in cancer therapy. Oncotarget 5:11–28

    PubMed  Google Scholar 

  • Hung MC, Link W (2011) Protein localization in disease and therapy. J Cell Sci 124:3381–3392

    CAS  PubMed  Google Scholar 

  • Hutten S, Dormann D (2020) Nucleocytoplasmic transport defects in neurodegeneration—cause or consequence? Semin Cell Dev Biol 99:151–162

    CAS  PubMed  Google Scholar 

  • Imamoto N, Shimamoto T, Kose S, Takao T, Tachibana T, Matsubae M, Sekimoto T, Shimonishi Y, Yoneda Y (1995a) The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett 368:415–419

    Google Scholar 

  • Imamoto N, Shimamoto T, Takao T, Tachibana T, Kose S, Matsubae M, Sekimoto T, Shimonishi Y, Yoneda Y (1995b) In vivo evidence for involvement of a 58 kDa component of nuclear pore-targeting complex in nuclear protein import. EMBO J 14:3617–3626

    Google Scholar 

  • Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–6547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakel S, Gorlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17:4491–4502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    Google Scholar 

  • Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, Paul JW 3rd, Sun S, Herdy JR, Bieri G, Kramer NJ, Gage FH, Van Den Bosch L, Robberecht W, Gitler AD (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18:1226–1229

    PubMed  PubMed Central  Google Scholar 

  • Kaláb P, Pralle A, Isacoff EY, Heald R, Weis K (2006) Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440:697–701

    PubMed  Google Scholar 

  • Kataoka N, Bachorik JL, Dreyfuss G (1999) Transportin-SR, a nuclear import receptor for SR proteins. J Cell Biol 145:1145–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nat Rev Canc 4:106–117

    CAS  Google Scholar 

  • Kelley JB, Paschal BM (2007) Hyperosmotic stress signaling to the nucleus disrupts the Ran gradient and the production of RanGTP. Mol Biol Cell 18:4365–4376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    CAS  PubMed  Google Scholar 

  • Kim JE, Hong YH, Kim JY, Jeon GS, Jung JH, Yoon BN, Son SY, Lee KW, Kim JI, Sung JJ (2017) Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis. PLoS One 12:e0176462

    PubMed  PubMed Central  Google Scholar 

  • Kimura M, Imamoto N (2014) Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 15:727–748

    CAS  PubMed  Google Scholar 

  • Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N (2017) Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. elife 6:e21184

    PubMed  PubMed Central  Google Scholar 

  • Kirli K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Go ̈rlich D (2015) A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. elife 4:e11466

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi J, Matsuura Y (2013) Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. J Mol Biol 425:1852–1868

    CAS  PubMed  Google Scholar 

  • Kodiha M, Bański P, Ho-Wo-Cheong D, Stochaj U (2008) Dissection of the molecular mechanisms that control the nuclear accumulation of transport factors importin-alpha and CAS in stressed cells. Cell Mol Life Sci 65:1756–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kose S, Furuta M, Imamoto N (2012) Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage. Cell 49:578–589

    Google Scholar 

  • Kose S, Imai K, Watanabe A, Nakai A, Suzuki Y, Imamoto N (2022) Lack of Hikeshi activates HSF1 activity under normal conditions and disturbs the heat-shock response. Life Sci Alliance 5:e202101241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, Soullie T, Rens J, Verhagen HJ, O’Connor MJ, Franken NA, Ten Hagen TL, Kanaar R, Aten JA (2011) Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 108:9851–9856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroeger PE, Morimoto RI (1994) Selection of new HSF1 and HSF2 DNA-binding sites reveals differences in trimer cooperativity. Mol Cell Biol 14:7592–7603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung K-H, Miller P, Gerstein M, Roeder SG, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutay U, Bischoff FR, Kostka S, Kraft R, Görlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90:1061–1071

    CAS  PubMed  Google Scholar 

  • Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105

    CAS  PubMed  Google Scholar 

  • Lee BJ, Cansizoglu AE, Süel KE, Louis TH, Zhang Z, Chook YM (2006) Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126:543–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    CAS  PubMed  Google Scholar 

  • Longshaw VM, Chapple JP, Balda MS, Cheetham ME, Blatch GL (2004) Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J Cell Sci 117:701–710

    CAS  PubMed  Google Scholar 

  • Lusk CP, King MC (2017) The nucleus: keeping it together by keeping it apart. Curr Opin Cell Biol 44:44–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackmull MT, Klaus B, Heinze I, Chokkalingam M, Beyer A, Russell RB, Ori A, Beck M (2017) Landscape of nuclear transport receptor cargo specificity. Mol Syst Biol 13:962

    PubMed  PubMed Central  Google Scholar 

  • Mahboubi H, Seganathy E, Kong D, Stochaj U (2013) Identification of novel stress granule components that are involved in nuclear transport. PLoS One 8:e68356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87

    PubMed  Google Scholar 

  • Matsuura Y (2016) Mechanistic insights from structural analyses of Ran-GTPase-driven nuclear export of proteins and RNAs. J Mol Biol 428:2025–2039

    CAS  PubMed  Google Scholar 

  • Mercier PA, Winegarden NA, Westwood JT (1999) Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress. J Cell Sci 112:2765–2774

    CAS  PubMed  Google Scholar 

  • Mikhaleva S, Lemke EA (2018) Beyond the transport function of import receptors: what’s all the FUS about? Cell 173:549–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto Y, Saiwaki T, Yamashita J, Yasuda Y, Kotera I, Shibata S, Shigeta M, Hiraoka Y, Haraguchi T, Yoneda Y (2004) Cellular stresses induce the nuclear accumulation of importin alpha and cause a conventional nuclear import block. J Cell Biol 165:617–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto Y, Yamada K, Yoneda Y (2016) Importin α: a key molecule in nuclear transport and non-transport functions. J Biochem. 160:69–75

    Google Scholar 

  • Mohr D, Frey S, Fischer T, Guttler T, Gorlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28:2541–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mor A, White MA, Fontoura BM (2014) Nuclear trafficking in health and disease. Curr Opin Cell Biol 28C:28–35

    Google Scholar 

  • Nguyen T, Pappireddi N, Wühr M (2019) Proteomics of nucleocytoplasmic partitioning. Curr Opin Chem Biol 48:55–63

    CAS  PubMed  Google Scholar 

  • Ogawa Y, Imamoto N (2018) Nuclear transport adapts to varying heat stress in a multistep mechanism. J Cell Biol 17:2341–2352

    Google Scholar 

  • Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelope permeability. Nature 254:109–114

    CAS  PubMed  Google Scholar 

  • Park HG, Han SI, Oh SY, Kang HS (2005) Cellular responses to mild heat stress. Cell Mol Life Sci 62:10–23

    CAS  PubMed  Google Scholar 

  • Paschal BM, Gerace L (1995) Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J Cell Biol 129:925–937

    CAS  PubMed  Google Scholar 

  • Pelham HR (1984) Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3:3095–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440:551–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T (2008) Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics 7:1254–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radu A, Blobel G, Moore MS (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA 92:1769–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman KMZ, Mamada H, Takagi M, Kose S, Imamoto N (2017) Hikeshi modulates the proteotoxic stress response in human cells: implication for the importance of the nuclear function of HSP70s. Genes Cells 22:968–976

    CAS  PubMed  Google Scholar 

  • Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR, Drummond DA (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20:665–680

    CAS  PubMed  Google Scholar 

  • Saito Y, Yamagishi N, Hatayama T (2007) Different localization of Hsp105 family proteins in mammalian cells. Exp Cell Res 313:3707–3717

    CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarge KD, Bray AE, Goodson ML (1995) Altered stress response in testis. Nature 374:126

    CAS  PubMed  Google Scholar 

  • Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, Martinez Molina D, Jafari R, Dovega RB, Klaeger S, Kuster B, Nordlund P, Bantscheff M, Drewes G (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784

    PubMed  Google Scholar 

  • Schmidt HB, Görlich D (2016) Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem Sci 41:46–61

    CAS  PubMed  Google Scholar 

  • Senapedis WT, Baloglu E, Landesman Y (2014) Clinical translation of nuclear export inhibitors in cancer. Semin Cancer Biol 27:74–86

    CAS  PubMed  Google Scholar 

  • Seno JD, Dynlacht JR (2004) Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock. J Cell Physiol 199:157–170

    CAS  PubMed  Google Scholar 

  • Shibata Y, Morimoto RI (2014) How the nucleus copes with proteotoxic stress. Curr Biol 24:R463–R474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Kose S, Watanabe A, Son SY, Choi S, Hong H, Yamashita E, Park IY, Imamoto N, Lee SJ (2015) Structural and functional analysis of Hikeshi, a new nuclear transport receptor of Hsp70s. Acta Crystallogr D Biol Crystallogr 71:473–483

    CAS  PubMed  Google Scholar 

  • Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050

    CAS  PubMed  Google Scholar 

  • Sun Q, Carrasco YP, Hu Y, Guo X, Mirzaei H, Macmillan J, Chook YM (2013) Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc Natl Acad Sci USA 110:1303–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J, Sendino M, Gorelick AN, Pastore A, Chang MT, Penson AV, Gavrila EI, Stewart C, Melnik EM, Herrejon Chavez F, Bitner L, Yoshimi A, Lee SC, Inoue D, Liu B, Zhang XJ, Mato AR, Dogan A, Kharas MG, Chen Y, Wang D, Soni RK, Hendrickson RC, Prieto G, Rodriguez JA, Taylor BS, Abdel-Wahab O (2019) Altered nuclear export signal recognition as a driver of oncogenesis. Cancer Discov 9:1452–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng SC, Wu KJ, Tseng SF, Wong CW, Kao L (2006) Importin KPNA2, NBS1, DNA repair and tumorigenesis. J Mol Histol 37:293–299

    CAS  PubMed  Google Scholar 

  • Terada K, Mori M (2000) Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J Biol Chem 275:24728–24734

    CAS  PubMed  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng SF, Chang CY, Wu KJ, Teng SC (2005) Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1. J Biol Chem 280:39594–39600

    CAS  PubMed  Google Scholar 

  • Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83:1021–1032

    CAS  PubMed  Google Scholar 

  • Vasilescu C, Isohanni P, Palomäki M, Pihko H, Suomalainen A, Carroll CJ (2017) Absence of Hikeshi, a nuclear transporter for heat-shock protein HSP70, causes infantile hypomyelinating leukoencephalopathy. Eur J Hum Genet 25:366–370

    CAS  PubMed  Google Scholar 

  • Velazquez JM, Lindquist S (1984) hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36:655–662

    CAS  PubMed  Google Scholar 

  • Velichko AK, Markova EN, Petrova NV, Razin SV, Kantidze OL (2013) Mechanisms of heat shock response in mammals. Cell Mol Life Sci 70:4229–4241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vujanac M, Fenaroli A, Zimarino V (2005) Constitutive nuclear import and stress-regulated nucleocytoplasmic shuttling of mammalian heat-shock factor 1. Traffic 6:214–229

    CAS  PubMed  Google Scholar 

  • Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA (2015) Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocyto- plasmic transport throughout the cell cycle. Cell 112:441–451

    CAS  PubMed  Google Scholar 

  • Weis K, Mattaj IW, Lamond AI (1995) Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 268:1049–1053

    CAS  PubMed  Google Scholar 

  • Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-Dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259:4501–4513

    CAS  PubMed  Google Scholar 

  • Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82:463–473

    CAS  PubMed  Google Scholar 

  • Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM (2014) Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem 86:3594–3601

    CAS  PubMed  Google Scholar 

  • Wolozin B, Ivanov P (2019) Stress granules and neurodegeneration. Nat Rev Neurosci 20:649–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Perisic O, Lis JT (1991) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64:585–593

    CAS  PubMed  Google Scholar 

  • Yanoma T, Ogata K, Yokobori T, Ide M, Mochiki E, Toyomasu Y, Yanai M, Kogure N, Kimura A, Suzuki M, Nakazawa N, Bai T, Oyama T, Asao T, Shirabe K, Kuwano H (2017) Heat shock-induced HIKESHI protects cell viability via nuclear translocation of heat shock protein 70. Oncol Rep 38:1500–1506

    CAS  PubMed  Google Scholar 

  • Yasuda Y, Miyamoto Y, Saiwaki T, Yoneda Y (2006) Mechanism of the stress-induced collapse of the Ran distribution. Exp Cell Res 312:512–520

    CAS  PubMed  Google Scholar 

  • Yasuda Y, Miyamoto Y, Yamashiro T, Asally M, Masui A, Wong C, Loveland KL, Yoneda Y (2012) Nuclear retention of importin α coordinates cell fate through changes in gene expression. EMBO J 31:83–94

    CAS  PubMed  Google Scholar 

  • Yoshimura SH, Hirano T (2016) HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments? J Cell Sci 129:3963–3970. Review

    CAS  PubMed  Google Scholar 

  • Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, Gupta S, Thomas MA, Hong I, Chiu SL, Huganir RL, Ostrow LW, Matunis MJ, Wang J, Sattler R, Lloyd TE, Rothstein JD (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, Bowen KE, Wadhwa H, Yang P, Rigo F, Taylor JP, Gitler AD, Rothstein JD, Lloyd TE (2018) Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173:958–971

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shingo Kose , Yutaka Ogawa or Naoko Imamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kose, S., Ogawa, Y., Imamoto, N. (2024). Thermal Stress and Nuclear Transport. In: Tominaga, M., Takagi, M. (eds) Thermal Biology. Advances in Experimental Medicine and Biology, vol 1461. Springer, Singapore. https://doi.org/10.1007/978-981-97-4584-5_5

Download citation

Publish with us

Policies and ethics