Skip to main content

Heart Tissue Simulants

  • Chapter
  • First Online:
Soft Tissue Simulants

Part of the book series: Biomedical Materials for Multi-functional Applications ((BMMA))

  • 14 Accesses

Abstract

The human heart is a vital organ responsible for pumping blood throughout the circulatory system, supplying oxygen and nutrients to the body's tissues, and removing waste products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stradins P (2004) Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardio-Thoracic Surg 26:634–639. https://doi.org/10.1016/j.ejcts.2004.05.043

    Article  Google Scholar 

  2. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol—Hear Circ Physiol 289:2048–2058. https://doi.org/10.1152/ajpheart.00934.2004

    Article  CAS  Google Scholar 

  3. Sack I, Rump J, Elgeti T, Samani A, Braun J (2009) MR elastography of the human heart: noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn Reson Med 61:668–677. https://doi.org/10.1002/mrm.21878

    Article  PubMed  Google Scholar 

  4. Canham PB, Finlay HM, Dixon JG, Boughner DR, Chen A (1989) Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovasc Res 23:973–982. https://doi.org/10.1093/cvr/23.11.973

    Article  CAS  PubMed  Google Scholar 

  5. Richardson PD, Keeny SM (1989) Anisotropy of human coronary artery intima. In: Bioengineering proceedings of northeast conference, IEEE, pp 205–206. https://doi.org/10.1109/nebc.1989.36772

  6. Oveissi F, Naficy S, Lee A, Winlaw DS, Dehghani F (2020) Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio 5:100038. https://doi.org/10.1016/j.mtbio.2019.100038

    Article  CAS  PubMed  Google Scholar 

  7. Nash MP, Hunter PJ (2000) Computational mechanics of the heart. From tissue structure to ventricular function. J Elast 61:113–141. https://doi.org/10.1023/A:1011084330767/METRICS

  8. Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E (2014) The living heart project: a robust and integrative simulator for human heart function. Eur J Mech—A/Solids 48:38–47. https://doi.org/10.1016/J.EUROMECHSOL.2014.04.001

    Article  PubMed  Google Scholar 

  9. Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34:1799–1819. https://doi.org/10.1007/S10439-006-9163-Z/FIGURES/5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR (2006) Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631–3638. https://doi.org/10.1016/J.BIOMATERIALS.2006.02.024

    Article  CAS  PubMed  Google Scholar 

  11. Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I et al (2018) Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater 28:1800618. https://doi.org/10.1002/ADFM.201800618

    Article  PubMed  PubMed Central  Google Scholar 

  12. Singh G, Chanda A (2021) Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 16:062004. https://doi.org/10.1088/1748-605X/AC2B7A

    Article  CAS  Google Scholar 

  13. Kalcioglu ZI, Mrozek RA, Mahmoodian R, VanLandingham MR, Lenhart JL, Van Vliet KJ (2013) Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants. J Biomech 46:1583–1591. https://doi.org/10.1016/J.JBIOMECH.2013.03.011

    Article  PubMed  Google Scholar 

  14. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L et al (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48. https://doi.org/10.1016/J.PBIOMOLBIO.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  15. Laflamme MA, Murry CE (2011) Heart regeneration. Nat 2011 4737347 2011;473:326–335. https://doi.org/10.1038/nature10147

  16. Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522. https://doi.org/10.1016/J.PBIOMOLBIO.2004.01.016

    Article  PubMed  Google Scholar 

  17. Driessen NJB, Boerboom RA, Huyghe JM, Bouten CVC, Baaijens FPT (2003) Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125:549–557. https://doi.org/10.1115/1.1590361

    Article  PubMed  Google Scholar 

  18. Chanda A, Singh G (2023) Applications, challenges, and future opportunities. Mater Horiz Nat Nanomater 85–92. https://doi.org/10.1007/978-981-99-2225-3_8/COVER.

  19. Chanda A, Unnikrishnan V, Lackey K, Robbins J (2020) Biofidelic conductive soft tissue surrogates. Int J Polym Mater Polym Biomater 69:127–135. https://doi.org/10.1080/00914037.2018.1552856

    Article  CAS  Google Scholar 

  20. Singh G, Chanda A (2023) Biofidelic tongue and tonsils tissue surrogates. Mater Horiz Nat Nanomater Part F1471:159–70. https://doi.org/10.1007/978-981-99-5064-5_10/COVER

  21. Singh G, Chanda A (2023) Development and biomechanical testing of human stomach tissue surrogates. Mater Horiz Nat Nanomater, Part F1471:113–25. https://doi.org/10.1007/978-981-99-5064-5_7/COVER

  22. Singh G, Chanda A (2023) Development and mechanical characterization of artificial surrogates for brain tissues. Biomed Eng Adv 5:100084. https://doi.org/10.1016/J.BEA.2023.100084

    Article  Google Scholar 

  23. Gupta V, Singh G, Chanda A (2022) Development and testing of skin grafts models with varying slit orientations. Mater Today Proc 62:3462–3467. https://doi.org/10.1016/J.MATPR.2022.04.282

    Article  Google Scholar 

  24. Makode S, Singh G, Chanda A (2021) Development of novel anisotropic skin simulants. Phys Scr 96:125019. https://doi.org/10.1088/1402-4896/AC2EFD

    Article  Google Scholar 

  25. Knöll R, Hoshijima M, Chien K (2003) Cardiac mechanotransduction and implications for heart disease. J Mol Med 81:750–756. https://doi.org/10.1007/S00109-003-0488-X/TABLES/1

    Article  PubMed  Google Scholar 

  26. Garrett AD (2013) Dabigatran vs. Warfarin in patients with mechanical heart valves. Drug Top 369:1206–1220. https://doi.org/10.1056/NEJMOA1300615/SUPPL_FILE/NEJMOA1300615_DISCLOSURES.PDF

  27. Griendling KK, Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100:607–621. https://doi.org/10.1161/01.RES.0000258492.96097.47

    Article  CAS  Google Scholar 

  28. Chanda A, Singh G (2023) Introduction to human tissues. Mater Horiz Nat Nanomater 1–12. https://doi.org/10.1007/978-981-99-2225-3_1/COVER

  29. Gupta V, Singh G, Gupta S, Chanda A (2023) Expansion potential of auxetic prosthetic skin grafts: a review. Eng Res Express 5:022003. https://doi.org/10.1088/2631-8695/ACCFE5

    Article  Google Scholar 

  30. Singh G, Gupta V, Chanda A (2022) Artificial skin with varying biomechanical properties. Mater Today Proc 62:3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433

    Article  CAS  Google Scholar 

  31. Chanda A, Callaway C (2018) Tissue anisotropy modeling using soft composite materials. Appl Bionics Biomech 2018. https://doi.org/10.1155/2018/4838157

  32. Chanda A, Singh G (2023) Muscles and connective tissues. Mater Horiz Nat Nanomater 25–32. https://doi.org/10.1007/978-981-99-2225-3_3/COVER

  33. Liu Z, Khalil RA (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 153:91–122. https://doi.org/10.1016/J.BCP.2018.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hunter PJ, McCulloch AD, Ter Keurs HEDJ (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69:289–331. https://doi.org/10.1016/S0079-6107(98)00013-3

    Article  CAS  PubMed  Google Scholar 

  35. Chanda A, Singh G (2023) Hyperelastic models for anisotropic tissue characterization. Mater Horiz Nat Nanomater 73–83. https://doi.org/10.1007/978-981-99-2225-3_7/COVER

  36. Chanda A, McClain S (2019) Mechanical modeling of healthy and diseased calcaneal fat pad surrogates. Biomimetics 4(1):1. https://doi.org/10.3390/BIOMIMETICS4010001

  37. Chanda A (2018) Biomechanical modeling of human skin tissue surrogates. Biomimetics 3(3):18. https://doi.org/10.3390/BIOMIMETICS3030018

  38. Gupta V, Chanda A (2022) Biomechanics of skin grafts: effect of pattern size, spacing and orientation. Eng Res Express 4:015006. https://doi.org/10.1088/2631-8695/AC48CB

    Article  Google Scholar 

  39. Singh G, Chanda A (2023) Development and biomechanical testing of artificial surrogates for vaginal tissue. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198837

    Article  Google Scholar 

  40. Singh G, Chanda A (2023) Biofidelic gallbladder tissue surrogates. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198835

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2024). Heart Tissue Simulants. In: Soft Tissue Simulants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-3060-5_7

Download citation

Publish with us

Policies and ethics