Skip to main content

Lung Tissue Simulants

  • Chapter
  • First Online:
Soft Tissue Simulants

Abstract

Human lung tissue is a complex and highly specialized organ responsible for the exchange of oxygen and carbon dioxide, a process essential for respiration. The lungs are vital components of the respiratory system, facilitating the exchange of gases between the air and the bloodstream. The lungs are a pair of large, sponge-like organs that are located in the thorax, lateral to the heart and superior to the diaphragm. Compared to the right lung, the left lung is considerably smaller and has two lobes, while the right lung has three lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faffe DS, Silva GH, Kurtz PMP, Negri EM, Capelozzi VL, Rocco PRM et al (2001) Lung tissue mechanics and extracellular matrix composition in a murine model of silicosis. J Appl Physiol 90:1400–1406. https://doi.org/10.1152/JAPPL.2001.90.4.1400/ASSET/IMAGES/LARGE/DG0410582004.JPEG

    Article  CAS  PubMed  Google Scholar 

  2. Ito S, Ingenito EP, Brewer KK, Black LD, Parameswaran H, Lutchen KR et al (2005) Mechanics, nonlinearity, and failure strength of lung tissue in a mouse model of emphysema: possible role of collagen remodeling. J Appl Physiol 98:503–511. https://doi.org/10.1152/JAPPLPHYSIOL.00590.2004/ASSET/IMAGES/LARGE/ZDG0020536060008.JPEG

    Article  PubMed  Google Scholar 

  3. Bou Jawde S, Takahashi A, Bates JHT, Suki B (2020) An analytical model for estimating alveolar wall elastic moduli from lung tissue uniaxial stress-strain curves. Front Physiol 11:121. https://doi.org/10.3389/fphys.2020.00121

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andrikakou P, Vickraman K, Arora H (2016) On the behaviour of lung tissue under tension and compression. Sci Rep 6:1–10. https://doi.org/10.1038/srep36642

    Article  CAS  Google Scholar 

  5. Mercer RR, Crapo JD (1990) Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69:756–765. https://doi.org/10.1152/jappl.1990.69.2.756

    Article  CAS  PubMed  Google Scholar 

  6. Singh G, Chanda A (2021) Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 16:062004. https://doi.org/10.1088/1748-605X/AC2B7A

    Article  CAS  Google Scholar 

  7. Mercer RR, Russell ML, Crapo JD (1994) Alveolar septal structure in different species. J Appl Physiol 77:1060–1066. https://doi.org/10.1152/jappl.1994.77.3.1060

    Article  CAS  PubMed  Google Scholar 

  8. Matsunashi A, Nagata K, Morimoto T, Tomii K (2023) Mechanical ventilation for acute exacerbation of fibrosing interstitial lung diseases. Respir Investig 61:306–313. https://doi.org/10.1016/J.RESINV.2023.01.008

    Article  CAS  PubMed  Google Scholar 

  9. Olasveengen TM, Skåre C, Skjerven-Martinsen M, Hoff-Olsen P, Kramer-Johansen J, Hoff Nordum F et al (2024) Lung tissue injury and hemodynamic effects of ventilations synchronized or unsynchronized to continuous chest compressions in a porcine cardiac arrest model. Resusc Plus 17:100530. https://doi.org/10.1016/J.RESPLU.2023.100530

    Article  PubMed  Google Scholar 

  10. Chanda A, Singh G (2023) Muscles and connective tissues. In: Materials horizons: from nature to nanomaterials, pp 25–32. https://doi.org/10.1007/978-981-99-2225-3_3/COVER

  11. Sebag SC, Bastarache JA, Ware LB (2013) Mechanical stretch inhibits lipopolysaccharide-induced keratinocyte-derived chemokine and tissue factor expression while increasing procoagulant activity in murine lung epithelial cells. J Biol Chem 288:7875–7884. https://doi.org/10.1074/JBC.M112.403220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panzetta V, Musella I, Rapa I, Volante M, Netti PA, Fusco S (2017) Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomater 57:334–341. https://doi.org/10.1016/J.ACTBIO.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  13. Karamchand L, Makeiff D, Gao Y, Azyat K, Serpe MJ, Kulka M (2023) Biomaterial inks and bioinks for fabricating 3D biomimetic lung tissue: a delicate balancing act between biocompatibility and mechanical printability. Bioprinting 29:e00255. https://doi.org/10.1016/J.BPRINT.2022.E00255

    Article  Google Scholar 

  14. Shirani A, Ganji F, Golmohammadi M, Hashemi SM, Mozafari M, Amoabediny G et al (2021) Cross-linked acellular lung for application in tissue engineering: effects on biocompatibility, mechanical properties and immunological responses. Mater Sci Eng C 122:111938. https://doi.org/10.1016/J.MSEC.2021.111938

    Article  CAS  Google Scholar 

  15. Singh G, Chanda A (2023) Biofidelic tongue and tonsils tissue surrogates. In: Materials horizons: from nature to nanomaterials, Part F1471, pp 159–70. https://doi.org/10.1007/978-981-99-5064-5_10/COVER

  16. Chanda A, Singh G (2023) Tissues in functional organs—low stiffness. In: Materials horizons: from nature to nanomaterials, pp 33–48. https://doi.org/10.1007/978-981-99-2225-3_4/COVER

  17. Singh G, Gupta V, Chanda A (2022) Artificial skin with varying biomechanical properties. Mater Today Proc 62:3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433

    Article  CAS  Google Scholar 

  18. Singh G, Chanda A (2022) Biomechanical modeling of progressive wound healing: a computational study. Biomed Eng Adv 4:100055. https://doi.org/10.1016/J.BEA.2022.100055

    Article  Google Scholar 

  19. Gupta V, Singla R, Singh G, Chanda A (2023) Development of soft composite based anisotropic synthetic skin for biomechanical testing. Fibers 11:55. https://doi.org/10.3390/FIB11060055

  20. Chanda A, Singh G (2023) Hyperelastic models for anisotropic tissue characterization. In: Materials horizons: from nature to nanomaterials, pp 73–83. https://doi.org/10.1007/978-981-99-2225-3_7/COVER

  21. Makode S, Singh G, Chanda A (2021) Development of novel anisotropic skin simulants. Phys Scr 96:125019. https://doi.org/10.1088/1402-4896/AC2EFD

    Article  Google Scholar 

  22. Singh G, Chanda A (2023) Biofidelic gallbladder tissue surrogates. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198835

    Article  Google Scholar 

  23. Chanda A, Unnikrishnan V, Lackey K, Robbins J (2020) Biofidelic conductive soft tissue surrogates. Int J Polym Mater Polym Biomater 69:127–135. https://doi.org/10.1080/00914037.2018.1552856

    Article  CAS  Google Scholar 

  24. Gupta V, Singh G, Chanda A (2023) Modeling of metamaterial based incision patterns for generating high expansions in skin grafts. Clin Biomech 110:106118. https://doi.org/10.1016/J.CLINBIOMECH.2023.106118

    Article  Google Scholar 

  25. Chanda A, Singh G (2023) Introduction to human tissues. In: Materials horizons: from nature to nanomaterials, pp 1–12. https://doi.org/10.1007/978-981-99-2225-3_1/COVER

  26. Gupta V, Singh G, Chanda A (2022) Development and testing of skin grafts models with varying slit orientations. Mater Today Proc 62:3462–3467. https://doi.org/10.1016/J.MATPR.2022.04.282

    Article  Google Scholar 

  27. Gupta V, Singh G, Gupta S, Chanda A (2023) Expansion potential of auxetic prosthetic skin grafts: a review. Eng Res Express 5:022003. https://doi.org/10.1088/2631-8695/ACCFE5

    Article  Google Scholar 

  28. Han L, Dong H, McClelland JR, Han L, Hawkes DJ, Barratt DC (2017) A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs. Med Image Anal 39:87–100. https://doi.org/10.1016/j.media.2017.04.003

    Article  PubMed  Google Scholar 

  29. Singh G, Chanda A (2023) Development and mechanical characterization of artificial surrogates for brain tissues. Biomed Eng Adv 5:100084. https://doi.org/10.1016/J.BEA.2023.100084

    Article  Google Scholar 

  30. Gupta V, Gupta S, Chanda A (2023) Development of an ultra-low-cost planar biaxial tester for soft tissue characterization. Biomed Phys Eng Express 9:025011. https://doi.org/10.1088/2057-1976/ACB940

    Article  Google Scholar 

  31. Gupta V, Singh G, Chanda A (2023) Development of hierarchical auxetic skin graft simulants with high expansion potential. Biomed Eng Adv 5:100087. https://doi.org/10.1016/J.BEA.2023.100087

    Article  Google Scholar 

  32. Vikatmaa P, Juutilainen V, Kuukasjärvi P, Malmivaara A (2008) Negative pressure wound therapy: a systematic review on effectiveness and safety. Eur J Vasc Endovasc Surg 36:438–448. https://doi.org/10.1016/J.EJVS.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  33. Gupta V, Singh G, Chanda A (2023) High expansion auxetic skin graft simulants for severe burn injury mitigation. Eur Burn J 4:108–120. https://doi.org/10.3390/EBJ4010011

  34. Sharabi M, Mandelberg Y, Benayahu D, Benayahu Y, Azem A, Haj-Ali R (2014) A new class of bio-composite materials of unique collagen fibers. J Mech Behav Biomed Mater 36:71–81. https://doi.org/10.1016/J.JMBBM.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  35. Jussila J, Leppäniemi A, Paronen M, Kulomäki E (2005) Ballistic skin simulant. Forensic Sci Int 150:63–71. https://doi.org/10.1016/J.FORSCIINT.2004.06.039

    Article  PubMed  Google Scholar 

  36. Khan A ur R, Huang K, Khalaji MS, Yu F, Xie X, Zhu T et al (2021) Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioact Mater 6:2783–800. https://doi.org/10.1016/J.BIOACTMAT.2021.01.040

  37. Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J et al (2019) Self‐healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci 6. https://doi.org/10.1002/advs.201801664

  38. Gupta V, Chanda A (2022) Biomechanics of skin grafts: effect of pattern size, spacing and orientation. Eng Res Express 4:015006. https://doi.org/10.1088/2631-8695/AC48CB

    Article  Google Scholar 

  39. Singh G, Chanda A (2023) Development and biomechanical testing of human stomach tissue surrogates. In: Materials horizons: from nature to nanomaterials, Part F1471, pp 113–25. https://doi.org/10.1007/978-981-99-5064-5_7/COVER

  40. Wang C, Yang J (2022) Mechanical forces: the missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 101:151234. https://doi.org/10.1016/J.EJCB.2022.151234

    Article  CAS  PubMed  Google Scholar 

  41. Matos HDS, Chu T, Casper BM, Babina MA, Daley MS, Shukla A (2023) Human lung simulants subjected to underwater explosions—an experimental investigation. J Mech Behav Biomed Mater 145:106035. https://doi.org/10.1016/J.JMBBM.2023.106035

    Article  PubMed  Google Scholar 

  42. Balestrini JL, Chaudhry S, Sarrazy V, Koehler A, Hinz B (2012) The mechanical memory of lung myofibroblasts. Integr Biol 4:410–421. https://doi.org/10.1039/C2IB00149G

    Article  CAS  Google Scholar 

  43. Ionescu C, Lopes A, Copot D, Machado JAT, Bates JHT (2017) The role of fractional calculus in modeling biological phenomena: a review. Commun Nonlinear Sci Numer Simul 51:141–159. https://doi.org/10.1016/J.CNSNS.2017.04.001

    Article  Google Scholar 

  44. Liu F, Tschumperlin DJ (2011) Micro-mechanical characterization of lung tissue using atomic force microscopy. JoVE e2911. https://doi.org/10.3791/2911

  45. Suki B, Bates JHT (2011) Lung tissue mechanics as an emergent phenomenon. J Appl Physiol 110:1111–1118. https://doi.org/10.1152/JAPPLPHYSIOL.01244.2010/ASSET/IMAGES/LARGE/ZDG0041194870004.JPEG

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2024). Lung Tissue Simulants. In: Soft Tissue Simulants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-3060-5_6

Download citation

Publish with us

Policies and ethics