Skip to main content

Brain Tissue Simulants

  • Chapter
  • First Online:
Soft Tissue Simulants

Part of the book series: Biomedical Materials for Multi-functional Applications ((BMMA))

  • 24 Accesses

Abstract

The human brain is an elastic and complex organ situated in the cranial cavity and shielded by the skull bones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J, Kohnert J et al (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340. https://doi.org/10.1016/j.actbio.2016.10.036

    Article  CAS  PubMed  Google Scholar 

  2. Budday S, Sarem M, Starck L, Sommer G, Pfefferle J, Phunchago N et al (2020) Towards microstructure-informed material models for human brain tissue. Acta Biomater 104:53–65. https://doi.org/10.1016/j.actbio.2019.12.030

    Article  CAS  PubMed  Google Scholar 

  3. Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the brain undergoing large deformation. J Biomech Eng 124:244–252. https://doi.org/10.1115/1.1449907

    Article  PubMed  Google Scholar 

  4. Takhounts EG, Crandall JR, Darvish K (2003) On the Importance of Nonlinearity of Brain Tissue under Large Deformations. SAE Tech. Pap., vol 2003-Octob, SAE Internationa. https://doi.org/10.4271/2003-22-0005

  5. Sack I, Streitberger K-J, Krefting D, Paul F, Braun J (2011) The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PLoS ONE 6:e23451. https://doi.org/10.1371/journal.pone.0023451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115–126. https://doi.org/10.1016/J.EXPNEUROL.2005.04.020

    Article  CAS  PubMed  Google Scholar 

  7. Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed 21:755–764. https://doi.org/10.1002/nbm.1254

    Article  PubMed  Google Scholar 

  8. Chanda A, Callaway C, Clifton C, Unnikrishnan V (2018) Biofidelic human brain tissue surrogates. Mech Adv Mater Struct 25:1335–1341. https://doi.org/10.1080/15376494.2016.1143749

    Article  Google Scholar 

  9. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18. https://doi.org/10.1016/J.JNEUMETH.2005.08.015

    Article  PubMed  Google Scholar 

  10. Cloots RJH, Van Dommelen JAW, Kleiven S, Geers MGD (2013) Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech Model Mechanobiol 12:137–150. https://doi.org/10.1007/S10237-012-0387-6/METRICS

    Article  CAS  PubMed  Google Scholar 

  11. Rashid B, Destrade M, Gilchrist MD (2012) Mechanical characterization of brain tissue in compression at dynamic strain rates. J Mech Behav Biomed Mater 10:23–38. https://doi.org/10.1016/j.jmbbm.2012.01.022

    Article  PubMed  Google Scholar 

  12. Yeung J, Jugé L, Hatt A, Bilston LE (2019) Paediatric brain tissue properties measured with magnetic resonance elastography. Biomech Model Mechanobiol 18:1497–1505. https://doi.org/10.1007/s10237-019-01157-x

    Article  PubMed  Google Scholar 

  13. Zhu Z, Jiang C, Jiang H (2019) A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility. Acta Mech 230:2125–2135. https://doi.org/10.1007/s00707-019-02383-1

    Article  Google Scholar 

  14. Pervin F, Chen WW (2011) Mechanically similar gel simulants for brain tissues. Conf Proc Soc Exp Mech Ser 1:9–13. https://doi.org/10.1007/978-1-4419-8228-5_3/COVER

    Article  Google Scholar 

  15. Gefen A, Margulies SS (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37:1339–1352. https://doi.org/10.1016/J.JBIOMECH.2003.12.032

    Article  PubMed  Google Scholar 

  16. Bilston LE (2011) Brain tissue mechanical properties. Springer, New York, NY, pp 69–89. https://doi.org/10.1007/978-1-4419-9997-9_4

  17. Huang X, Chafi H, Matthews KL, Carmichael O, Li T, Miao Q et al (2019) Magnetic resonance elastography of the brain: a study of feasibility and reproducibility using an ergonomic pillow-like passive driver. Magn Reson Imaging 59:68–76. https://doi.org/10.1016/j.mri.2019.03.009

    Article  PubMed  Google Scholar 

  18. Budday S, Nay R, de Rooij R, Steinmann P, Wyrobek T, Ovaert TC et al (2015) Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330. https://doi.org/10.1016/j.jmbbm.2015.02.024

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shuck LZ, Advani SH (1972) Rheologioal response of human brain tissue in shear. J Fluids Eng Trans ASME 94:905–911. https://doi.org/10.1115/1.3425588

    Article  Google Scholar 

  20. Chatelin S, Constantinesco A, Willinger R (2010) Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47:255–276. https://doi.org/10.3233/BIR-2010-0576

    Article  PubMed  Google Scholar 

  21. Miller K, Chinzei K (2002) Mechanical properties of brain tissue in tension. J Biomech 35:483–490. https://doi.org/10.1016/S0021-9290(01)00234-2

    Article  PubMed  Google Scholar 

  22. Singh G, Chanda A (2021) Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 16:062004. https://doi.org/10.1088/1748-605X/AC2B7A

    Article  CAS  Google Scholar 

  23. Zhang W, Liu L, Xiong Y, Liu Y, Yu S, Wu C, et al (2018) Effect of in vitro storage duration on measured mechanical properties of brain tissue. Sci Rep 8. https://doi.org/10.1038/s41598-018-19687-2

  24. Singh G, Chanda A (2023) Development and mechanical characterization of artificial surrogates for brain tissues. Biomed Eng Adv 5:100084. https://doi.org/10.1016/J.BEA.2023.100084

    Article  Google Scholar 

  25. Chanda A, Callaway C (2018) Tissue anisotropy modeling using soft composite materials. Appl Bionics Biomech 2018. https://doi.org/10.1155/2018/4838157

  26. Chanda A, Singh G (2023) Tissues in functional organs—low stiffness. Mater Horizons From Nat to Nanomater:33–48. https://doi.org/10.1007/978-981-99-2225-3_4/COVER

  27. Chanda A, Singh G (2023) Applications, challenges, and future opportunities. Mater Horizons From Nat to Nanomater:85–92. https://doi.org/10.1007/978-981-99-2225-3_8/COVER

  28. Singh G, Gupta V, Chanda A (2022) Artificial skin with varying biomechanical properties. Mater Today Proc 62:3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433

    Article  CAS  Google Scholar 

  29. Gupta V, Singla R, Singh G, Chanda A (2023) Development of soft composite based anisotropic synthetic skin for biomechanical testing. Fibers 11:55. https://doi.org/10.3390/FIB11060055

  30. Makode S, Singh G, Chanda A (2021) Development of novel anisotropic skin simulants. Phys Scr 96:125019. https://doi.org/10.1088/1402-4896/AC2EFD

    Article  Google Scholar 

  31. Gupta V, Singh G, Gupta S, Chanda A (2023) Expansion potential of auxetic prosthetic skin grafts: a review. Eng Res Express 5:022003. https://doi.org/10.1088/2631-8695/ACCFE5

    Article  Google Scholar 

  32. Chanda A (2018) Biomechanical modeling of human skin tissue surrogates. Biomimetics 3:18. https://doi.org/10.3390/BIOMIMETICS3030018

  33. Singh G, Chanda A (2023) Biofidelic tongue and tonsils tissue surrogates. Mater Horizons From Nat to Nanomater; Part F1471:159–70. https://doi.org/10.1007/978-981-99-5064-5_10/COVER

  34. Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299–306. https://doi.org/10.1039/B610522J

    Article  CAS  PubMed  Google Scholar 

  35. Chhikara K, Singh G, Gupta S, Chanda A (2022) Progress of additive manufacturing in fabrication of foot orthoses for diabetic patients: a review. Ann 3D Print Med 8:100085. https://doi.org/10.1016/J.STLM.2022.100085

  36. Chanda A, Unnikrishnan V, Lackey K, Robbins J (2020) Biofidelic conductive soft tissue surrogates. Int J Polym Mater Polym Biomater 69:127–135. https://doi.org/10.1080/00914037.2018.1552856

    Article  CAS  Google Scholar 

  37. Chanda A, Singh G (2023) Introduction to human tissues. Mater Horizons From Nat to Nanomater:1–12. https://doi.org/10.1007/978-981-99-2225-3_1/COVER

  38. Chanda A, Unnikrishnan V, Flynn Z, Lackey K (2017) Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties. Proc Inst Mech Eng Part H J Eng Med 231:80–91. https://doi.org/10.1177/0954411916679438

  39. Singh G, Chanda A (2023) Development and biomechanical testing of artificial surrogates for vaginal tissue. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198837

    Article  Google Scholar 

  40. Singh G, Chanda A (2023) Biofidelic gallbladder tissue surrogates. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198835

    Article  Google Scholar 

  41. Gupta V, Singh G, Chanda A (2023) Development of novel hierarchical designs for skin graft simulants with high expansion potential. Biomed Phys Eng Express 9:035024. https://doi.org/10.1088/2057-1976/ACC661

    Article  Google Scholar 

  42. Gupta V, Singh G, Chanda A (2023) High Expansion Auxetic Skin Graft Simulants for Severe Burn Injury Mitigation. Eur Burn J 4:108–20. https://doi.org/10.3390/EBJ4010011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2024). Brain Tissue Simulants. In: Soft Tissue Simulants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-3060-5_5

Download citation

Publish with us

Policies and ethics