Skip to main content

Muscle Tissue Simulants

  • Chapter
  • First Online:
Soft Tissue Simulants

Part of the book series: Biomedical Materials for Multi-functional Applications ((BMMA))

  • 15 Accesses

Abstract

Muscles are flexible tissues with contractile properties and are viscoelastic, anisotropic, and nonlinear in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Payne T, Mitchell S, Bibb R, Waters M (2015) Development of novel synthetic muscle tissues for sports impact surrogates. J Mech Behav Biomed Mater 41:357–374. https://doi.org/10.1016/j.jmbbm.2014.08.011

    Article  PubMed  Google Scholar 

  2. Bach AD, Beier JP, Stern-Staeter J, Horch RE (2004) Skeletal muscle tissue engineering. J Cell Mol Med 8:413–422. https://doi.org/10.1111/J.1582-4934.2004.TB00466.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204:3133–3139. https://doi.org/10.1242/JEB.204.18.3133

    Article  CAS  PubMed  Google Scholar 

  4. Smooth, skeletal, and cardiac muscles, n.d.

    Google Scholar 

  5. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 237(23):879–884. https://doi.org/10.1038/nbt1109.

  6. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Behav Genet 45:183–195. https://doi.org/10.1007/S00223-014-9915-Y/FIGURES/5

    Article  Google Scholar 

  7. Valentine BA (2017) Skeletal muscle. Pathol Basis Vet Dis Expert Consult:908–953.e1. https://doi.org/10.1016/B978-0-323-35775-3.00015-1.

  8. Cardinet GH (1997) Skeletal muscle function. Clin Biochem Domest Anim:407–440. https://doi.org/10.1016/B978-012396305-5/50017-8.

  9. Hopkins PM (2006) Skeletal muscle physiology. Contin Educ Anaesth Crit Care Pain 6:1–6. https://doi.org/10.1093/BJACEACCP/MKI062

    Article  Google Scholar 

  10. Ernster L, Nordenbrand K (1967) Skeletal muscle mitochondria. Methods Enzymol 10:86–94. https://doi.org/10.1016/0076-6879(67)10017-7

    Article  CAS  Google Scholar 

  11. Buckingham M (2001) Skeletal muscle formation in vertebrates. Curr Opin Genet Dev 11:440–448. https://doi.org/10.1016/S0959-437X(00)00215-X

    Article  CAS  PubMed  Google Scholar 

  12. Mukund K, Subramaniam S (2020) Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med 12:e1462. https://doi.org/10.1002/WSBM.1462

    Article  PubMed  Google Scholar 

  13. Sheffield-Moore M, Urban RJ (2004) An overview of the endocrinology of skeletal muscle. Trends Endocrinol Metab 15:110–115. https://doi.org/10.1016/j.tem.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  14. Hill JA, Olson EN (2012) An introduction to muscle. Muscle, vol 1. Elsevier Inc., pp 3–9 https://doi.org/10.1016/B978-0-12-381510-1.00001-6.

  15. Webb RC (2003) Smooth muscle contraction and relaxation. Am J Physiol - Adv Physiol Educ 27:201–206. https://doi.org/10.1152/ADVAN.00025.2003/ASSET/IMAGES/LARGE/U10430173002.JPEG

    Article  Google Scholar 

  16. Hafen BB, Burns B (2018) Physiology, smooth muscle. StatPearls

    Google Scholar 

  17. Doran AC, Meller N, McNamara CA (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28:812–819. https://doi.org/10.1161/ATVBAHA.107.159327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berridge MJ, Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586:5047–5061. https://doi.org/10.1113/JPHYSIOL.2008.160440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrera AM, McParland BE, Bienkowska A, Tait R, Paré PD, Seow CY (2005) ‘Sarcomeres’ of smooth muscle: functional characteristics and ultrastructural evidence. J Cell Sci 118:2381–2392. https://doi.org/10.1242/JCS.02368

    Article  CAS  PubMed  Google Scholar 

  20. Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 95:194–204. https://doi.org/10.1093/CVR/CVS135

    Article  CAS  PubMed  Google Scholar 

  21. Singh G, Chanda A (2021) Mechanical properties of whole-body soft human tissues: a review. Biomed Mater 16:062004. https://doi.org/10.1088/1748-605X/AC2B7A

    Article  CAS  Google Scholar 

  22. Sanders KM, Kito Y, Hwang SJ, Ward SM (2016) Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology 31:316–326. https://doi.org/10.1152/PHYSIOL.00006.2016/ASSET/IMAGES/LARGE/PHY0041603390002.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Griendling KK, Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100:607–621. https://doi.org/10.1161/01.RES.0000258492.96097.47

    Article  CAS  Google Scholar 

  24. Liu Z, Khalil RA (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 153:91–122. https://doi.org/10.1016/J.BCP.2018.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montero D, Walther G, Pérez-Martin A, Vicente-Salar N, Roche E, Vinet A (2013) Vascular smooth muscle function in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetologia 56:2122–2133. https://doi.org/10.1007/S00125-013-2974-1/FIGURES/4

    Article  CAS  PubMed  Google Scholar 

  26. Hunter PJ, McCulloch AD, Ter Keurs HEDJ (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69:289–331. https://doi.org/10.1016/S0079-6107(98)00013-3

    Article  CAS  PubMed  Google Scholar 

  27. Pinnell J, Frca C, Turner S, Mb B, Howell S, Frca M (2007) Cardiac muscle physiology. Contin Educ Anaesth Crit Care Pain 7:85–88. https://doi.org/10.1093/BJACEACCP/MKM013

    Article  Google Scholar 

  28. Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840. https://doi.org/10.1016/S0022-2828(85)80097-3

    Article  CAS  PubMed  Google Scholar 

  29. Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, Muskheli V et al (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci U S A 106:16568–16573. https://doi.org/10.1073/PNAS.0908381106/SUPPL_FILE/0908381106SI.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reinecke H, MacDonald GH, Hauschka SD, Murry CE (2000) Electromechanical coupling between skeletal and cardiac muscle: Implications for infarct repair. J Cell Biol 149:731–740. https://doi.org/10.1083/JCB.149.3.731/VIDEO-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C (2005) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17:391. https://doi.org/10.1088/0957-4484/17/2/008

    Article  CAS  Google Scholar 

  32. Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34:1545–1553. https://doi.org/10.1016/S0021-9290(01)00149-X

    Article  CAS  PubMed  Google Scholar 

  33. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes. Circ Res 93:32–39. https://doi.org/10.1161/01.RES.0000080317.92718.99

    Article  CAS  PubMed  Google Scholar 

  34. Engelmayr GC, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7(12):1003–1010. https://doi.org/10.1038/nmat2316

  35. Zimmermann WH, Didié M, Döker S, Melnychenko I, Naito H, Rogge C et al (2006) Heart muscle engineering: an update on cardiac muscle replacement therapy. Cardiovasc Res 71:419–429. https://doi.org/10.1016/J.CARDIORES.2006.03.023/2/71-3-419-FIG4.GIF

    Article  CAS  PubMed  Google Scholar 

  36. Makode S, Singh G, Chanda A (2021) Development of novel anisotropic skin simulants. Phys Scr 96:125019. https://doi.org/10.1088/1402-4896/AC2EFD

    Article  Google Scholar 

  37. Chanda A, Unnikrishnan V, Lackey K, Robbins J (2020) Biofidelic conductive soft tissue surrogates. Int J Polym Mater Polym Biomater 69:127–135. https://doi.org/10.1080/00914037.2018.1552856

    Article  CAS  Google Scholar 

  38. Gupta V, Singh G, Chanda A (2022) Development and testing of skin grafts models with varying slit orientations. Mater Today Proc 62:3462–3467. https://doi.org/10.1016/J.MATPR.2022.04.282

    Article  Google Scholar 

  39. Gupta V, Chanda A (2022) Biomechanics of skin grafts: effect of pattern size, spacing and orientation. Eng Res Express 4:015006. https://doi.org/10.1088/2631-8695/AC48CB

    Article  Google Scholar 

  40. Gupta V, Chanda A (2022) Expansion potential of skin grafts with alternating slit based auxetic incisions. Forces Mech 7:100092. https://doi.org/10.1016/J.FINMEC.2022.100092

    Article  Google Scholar 

  41. Singh G, Chanda A (2022) Biomechanical modeling of progressive wound healing: a computational study. Biomed Eng Adv 4:100055. https://doi.org/10.1016/J.BEA.2022.100055

    Article  Google Scholar 

  42. Gupta V, Singh G, Chanda A (2023) Modeling of metamaterial based incision patterns for generating high expansions in skin grafts. Clin Biomech 110:106118. https://doi.org/10.1016/J.CLINBIOMECH.2023.106118

    Article  Google Scholar 

  43. Chanda A, Singh G (2023) Tissues in functional organs—low stiffness. Mater Horizons From Nat to Nanomater:33–48. https://doi.org/10.1007/978-981-99-2225-3_4/COVER.

  44. Chanda A, Unnikrishnan V, Flynn Z, Lackey K (2017) Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties. Proc Inst Mech Eng Part H J Eng Med 231:80–91. https://doi.org/10.1177/0954411916679438/ASSET/IMAGES/LARGE/10.1177_0954411916679438-FIG16.JPEG

    Article  Google Scholar 

  45. Chanda A (2018) Biomechanical modeling of human skin tissue surrogates. Biomimetics 3:18. https://doi.org/10.3390/BIOMIMETICS3030018

  46. Singh G, Chanda A (2023) Development and biomechanical testing of artificial surrogates for vaginal tissue. Adv Mater Process Technol. https://doi.org/10.1080/2374068X.2023.2198837

    Article  Google Scholar 

  47. Gupta V, Singh G, Chanda A (2023) Development of novel hierarchical designs for skin graft simulants with high expansion potential. Biomed Phys Eng Express 9:035024. https://doi.org/10.1088/2057-1976/ACC661

    Article  Google Scholar 

  48. Gupta V, Singh G, Chanda A (2023) High expansion auxetic skin graft simulants for severe burn injury mitigation. Eur Burn J 4:108–20. https://doi.org/10.3390/EBJ4010011

  49. Gupta V, Singla R, Singh G, Chanda A (2023) Development of soft composite based anisotropic synthetic skin for biomechanical testing. Fibers 11:55. https://doi.org/10.3390/FIB11060055.

  50. Singh G, Chanda A (2023) Development and mechanical characterization of artificial surrogates for brain tissues. Biomed Eng Adv 5:100084. https://doi.org/10.1016/J.BEA.2023.100084

    Article  Google Scholar 

  51. Chhikara K, Singh G, Gupta S, Chanda A (2022) Progress of additive manufacturing in fabrication of foot orthoses for diabetic patients: a review. Ann 3D Print Med 8:100085. https://doi.org/10.1016/J.STLM.2022.100085

  52. Singh G, Gupta V, Chanda A (2022) Artificial skin with varying biomechanical properties. Mater Today Proc 62:3162–3166. https://doi.org/10.1016/J.MATPR.2022.03.433

    Article  CAS  Google Scholar 

  53. Chanda A, McClain S (2019) Mechanical modeling of healthy and diseased calcaneal fat pad surrogates. Biomimetics 4:1. https://doi.org/10.3390/BIOMIMETICS4010001

  54. Singh G, Chanda A (2023) Biofidelic tongue and tonsils tissue surrogates. Mater Horizons From Nat to Nanomater: Part F1471:159–70. https://doi.org/10.1007/978-981-99-5064-5_10/COVER

  55. Singh G, Chanda A (2023) Development and biomechanical testing of human stomach tissue surrogates. Mater Horizons From Nat to Nanomater: Part F1471:113–25. https://doi.org/10.1007/978-981-99-5064-5_7/COVER

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2024). Muscle Tissue Simulants. In: Soft Tissue Simulants. Biomedical Materials for Multi-functional Applications. Springer, Singapore. https://doi.org/10.1007/978-981-97-3060-5_4

Download citation

Publish with us

Policies and ethics